화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.2, 219-225, April, 2019
콜레스테릴기와 아조벤젠기를 갖는 곁사슬 액정고분자의 합성 및 성질
Syntheses and Properties of Side Chain Liquid Crystalline Polymers with Cholesteryl and Azobenzene Functional Groups
E-mail:
초록
메소젠기로서 다양한 조성의 아조벤젠기와 콜레스테릴기를 갖는 곁사슬 액정고분자를 직접중축합에 의해 합성하고 고분자들의 특성을 조사하였다. 1,1,2,2-테트라클로로에테인으로 측정된 합성된 고분자들의 고유점성도는 0.32과 0.38 dL/g 사이의 값을 나타냈다. 아조벤젠기만을 포함하고 있는 고분자, SP-A10C0를 제외한 모든 고분자들은 부피가 큰 곁사슬의 메소젠기로 인하여 무정형이거나 매우 낮은 결정성을 나타냈다. 합성된 고분자들은 모두 양방성 액정성을 보였으며, 아조벤젠기만을 갖는 고분자 SP-A10C0는 네마틱상을, 그 외의 모든 고분자들은 콜레스테릭상을 나타냈다. 특히, 고분자의 곁사슬로 콜레스테릴기의 함량이 많아지면 콜레스테릴기의 큰 부피로 인하여 액정성이 감소됨을 알 수 있었다.
Side-chain liquid crystalline polymers with various compositions of azobenzene and cholesteryl functional groups as the mesogenic moiety were synthesized by direct polycondensation, and their properties were investigated. The inherent viscosity values of synthesized polymers were between 0.32 and 0.38 dL/g in 1,1,2,2-tetrachloroethane. All polymers except the SP-A10C0 polymer containing only the azobenzene group were amorphous or exhibited very low crystallinity due to the presence of bulky mesogenic side chains. All synthesized polymers exhibited enantiotropic liquid crystallinity; the SP-A10C0 polymer having only the azobenzene group exhibited a nematic phase, and all other polymers showed a cholesteric phase. In particular, it was found that when the content of cholesteryl groups in the side chain of the polymer increases, the liquid crystallinity decreases due to the bulkiness of cholesteryl groups.
  1. Finkelmann H, Happ M, Portugal M, Ringsdorf H, Makromol. Chem., 179, 2541 (1978)
  2. Cser F, Nematic polymers and related structures, J. Phys. Colloq., 40, C3-459-C3-470 (1979).
  3. Horvath J, Nyitrai K, Cser F, Hardy G, Eur. Polym. J., 21, 251 (1985)
  4. Frosini V, Levita G, Lupinacci D, Magagnini PL, Mol. Cryst. Liq. Cryst., 66, 21 (1981)
  5. Jeong SY, Ma YD, Polymer, 32, 489 (2008)
  6. Jeong SY, Ma YD, Polymer, 33, 58 (2009)
  7. Ganicz T, Stanczyk W, Materials, 2, 95 (2009)
  8. Tian Y, Akiyama E, Nagase Y, Kanazawa A, Tsutsumi O, Ikeda T, Macromol. Chem. Phys., 201, 1640 (2000)
  9. Kihara H, Tamaoki N, Liq. Cryst., 34, 1337 (2007)
  10. Kim HJ, Appl. Chem. Eng., 23(1), 65 (2012)
  11. Bogdanov AV, Vorobiev AK, J. Phys. Chem. B, 117(44), 13936 (2013)
  12. Karim MR, Sheikh MRK, Yahya R, Salleh NM, Azzahari AD, Colloid Polym. Sci., 293, 1923 (2015)
  13. Park JR, Gu SJ, Yoon DS, Bang MS, Choi JK, Appl. Chem. Eng., 26(6), 698 (2015)
  14. Park JR, Cho KY, Bang MS, Appl. Chem. Eng., 26(3), 280 (2015)
  15. Alazaroaie S, Toader V, Carlescu I, Kazmierski K, Scutaru D, Hurduc N, Simionescu CI, Eur. Polym. J., 39, 1333 (2003)
  16. Hosono N, Kajitani T, Fukushima T, Ito K, Sasaki S, Takata M, Aida T, Science, 330(6005), 808 (2010)
  17. Barrett CJ, Mamiya JI, Yager KG, Ikeda T, Soft Matter, 3, 1205 (2007)
  18. Tamaoki N, Aoki Y, Moriyama M, Kidowaki M, Chem. Mater., 15, 719 (2003)
  19. van der Werff L, Kyratzis IL, Robinson A, Cranston R, Peeters G, O'Shea M, Nichols L, J. Mater. Sci., 48(14), 5005 (2013)
  20. Nishiyama I, Yamamoto T, Yamamoto J, Goodby JW, Yokoyama H, J. Mater. Chem., 13, 1868 (2003)
  21. Meadows MR, Handschy MA, Clark NA, Appl. Phys. Lett., 54, 1394 (1989)
  22. Kleman M, Acta Cryst., A37, 607 (1981)
  23. Kim IS, Charateristics and applications of cholesteric liquid crystals (CLC), in: Electronic Times, http://www.etnews.com/19980324-0084 (1998).
  24. Armarego WLF, Chai CLL, Purification of Laboratory Chemicals, 5th ed., Elsevier Science, NY, USA (2003).
  25. Gal YS, Jin SH, Kim SH, J. Ind. Eng. Chem., 12(2), 235 (2006)
  26. Cha SW, Jin JI, Kim DC, Zin WC, Macromolecules, 34(15), 5342 (2001)
  27. Ju J, Huan ML, Wan N, Qiu H, Zhou SY, Zhang BL, Int. J. Mol. Sci., 16(3), 5666 (2015)
  28. Higashi F, Mashimo T, Takahashi I, J. Polym. Sci. A: Polym. Chem., 24, 91 (1986)