화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.2, 212-218, April, 2019
탄소나노튜브의 무전해 니켈도금 및 전자파 차폐 특성에 미치는 함산소불소화의 영향
Effect of Oxyfluorination on Electroless Ni Deposition of Carbon Nanotubes (CNTs) and Their EMI Shielding Properties
E-mail:
초록
탄소나노튜브의 함산소불소화가 무전해 니켈도금 및 전자파 차폐효율에 미치는 영향을 확인하기 위하여, 탄소나노튜브를 산소 및 불소 혼합가스로 표면처리 후, 무전해 니켈도금을 실시하였다. 제조된 탄소나노튜브의 전자파 차폐 특성을 평가하기 위하여 폴리이미드 필름 위에 얇은 필름을 제작하였다. X-선 광전자분광법(XPS)을 이용하여 함산소불화 탄소나노튜브의 표면화학적 특성을 확인하였다. 또한, 열중량분석법(TGA)과 주사전자현미경(SEM) 분석결과, 함산소 불소화 정도에 따른 탄소나노튜브의 니켈도금된 양과 표면 형상이 변화하였음을 알 수 있었다. O2 : F2 = 1 : 9로 처리 후, 니켈도금된 탄소나노튜브는 1 GHz에서 약 19.4 dB 이상으로 가장 우수한 전자파 차폐효율을 나타내었다. 이러한 결과는 탄소나노튜브의 함산소불소화로 표면에 형성된 산소 및 불소 관능기 때문으로 여겨지며, 이 관능기들은 적절한 양의 니켈도금을 가능하게 하며 도금 용액에서의 분산성을 향상시켰다.
To investigate the effect of the oxyfluorination of carbon nanotubes (OF-CNTs) on electroless Ni deposition and electromagnetic interference shielding efficiency (EMI SE), CNTs were treated with a mixture of oxygen and fluorine gases and sequentially deposited with nickel. These samples were then manufactured into thin films on a polyimide film to evaluate their EMI SE. The surface chemical property of OF-CNTs was investigated by X-ray photoelectron spectroscopy. From the results of thermogravimetric and scanning electron microscopic analyses, it was found that both the amount of deposited Ni and the surface morphology changed depending on oxyfluorination. Moreover, the Ni-deposited CNTs pretreated with O2 : F2 = 1 : 9 vol% exhibited the maximum EMI SE as approximately 19.4 dB at 1 GHz. These results were attributed to the formation of oxygen and fluorine functional groups on the surface of CNTs due to the oxyfluorination, and the functional groups enabled to deposit a suitable amount of Ni and improve the dispersion in the deposited solution.
  1. Lee KM, Lee SE, Lee YS, J. Ind. Eng. Chem., 56, 435 (2017)
  2. Zhang X, Li C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 679, 511 (2017)
  3. Xia CL, Ren H, Shi SQ, Zhang HL, Cheng JT, Cai LP, Chen K, Tan HS, Appl. Surf. Sci., 362, 335 (2016)
  4. Kim JH, Kim DY, Lee YS, Carbon Lett., 21, 111 (2017)
  5. Lee KM, Kim MJ, Jo H, Yeo SY, Lee YS, Carbon Lett., 24, 111 (2017)
  6. Park MS, Lee S, Lee YS, Carbon Lett., 21, 1 (2017)
  7. Aliyu A, Abdulkareem AS, Kovo AS, Abubakre OK, Tijani JO, Kariim I, Carbon Lett., 21, 33 (2017)
  8. Im JS, Kim JG, Lee YS, Carbon, 47, 2640 (2009)
  9. Kim BJ, Bae KM, Lee YS, An KH, Park SJ, Surf. Coat. Technol., 242, 125 (2014)
  10. Yim YJ, Rhee KY, Park SJ, Composites A, 98, 120 (2016)
  11. Choi WK, Kim BJ, Park SJ, Carbon Lett., 14, 243 (2013)
  12. Fetohi AE, Hameed RMA, El-Khatib KM, J. Ind. Eng. Chem., 30, 239 (2015)
  13. Kim DY, Yun KJ, Lee YS, Appl. Chem. Eng., 25(3), 268 (2014)
  14. Bonin L, Bains N, Vitry V, Cobley AJ, Ultrasonics, 77, 61 (2017)
  15. Wang Y, Wang Y, Chen JJ, Guo H, Liang K, Marcus K, Peng QL, Zhang J, Feng ZS, Electrochim. Acta, 218, 24 (2016)
  16. Yim YJ, Rhee KY, Park SJ, Composites B, 98, 120 (2016)
  17. Cao J, Wu Z, Yang J, Li S, Tang H, Xie G, Colloids Surf. A: Physicochem. Eng. Asp., 415, 347 (2012)
  18. Lee YS, Lee BK, Carbon, 40, 2461 (2002)
  19. Jo H, Kim KH, Jung MJ, Park JH, Lee YS, Appl. Surf. Sci., 409, 117 (2017)
  20. Yu HR, Kim JG, Im JS, Bae TS, Lee YS, J. Ind. Eng. Chem., 18(2), 674 (2012)
  21. Kim KH, Han JI, Kang DH, Lee YS, Carbon Lett., 28, 96 (2018)
  22. Nicolson AM, Ross GF, IEEE Trans. Instrum. Meas., 19, 377 (1970)
  23. Jung MJ, Yu HR, Lee YS, Carbon Lett., 26, 112 (2018)
  24. Jung MJ, Jeong E, Lim JW, Lee SI, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 389, 274 (2011)
  25. Thomas RR, Lloyd KG, Stika KM, Stephans LE, Magallanes GS, Dimonie VL, Sudol ED, El-Aasser MS, Macromolecules, 33(23), 8828 (2000)
  26. Lu W, Donepudi VS, Prakash J, Liu J, Amine K, Electrochim. Acta, 47(10), 1601 (2002)
  27. Tian F, Li HP, Zhao NQ, He CN, Mater. Chem. Phys., 115(2-3), 493 (2009)
  28. Kim YY, Yun J, Kim HI, Lee YS, J. Ind. Eng. Chem., 18(1), 392 (2012)
  29. Sun YP, Fu K, Lin Y, Huqng W, Accounts Chem. Res., 35, 1096 (2002)
  30. Im JS, Kim JG, Lee SH, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 364, 151 (2010)
  31. Ji KJ, Zhao HH, Zhang J, Chen J, Dai ZD, Appl. Surf. Sci., 311, 351 (2014)
  32. Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q, Prog. Polym. Sci., 37, 627 (2014)
  33. Jonsson SKM, Birgerson J, Crispin X, Greczynski G, Osikowicz W, van der Gon AWD, Salaneck WR, Fahlman M, Synth. Met., 139, 1 (2003)
  34. Chung DDL, Carbon, 39, 279 (2001)
  35. Joseph N, Janardhanan C, Sebastian MT, Compos. Sci. Technol., 101, 139 (2014)
  36. Schelkunoff SA, Electromagnetic Waves, Princeton, New Jersey, USA (1943).
  37. Schulz RB, Plantz VC, Brush DR, IEEE Trans. Electromagn. Compat., 30, 187 (1988)
  38. Lin JH, Lin ZI, Pan YJ, Chen CK, Huang CL, Huang CH, Lou CW, Macromol. Mater. Eng., 301, 199 (2016)
  39. Xing D, Lu L, Tang W, Xie Y, Tang Y, Mater. Lett., 207, 165 (2017)
  40. Chen ZP, Xu C, Ma CQ, Ren WC, Cheng HM, Adv. Mater., 25(9), 1296 (2013)
  41. Kuester S, Barra GMO, Ferreira JC, Soares BG, Demarquette NR, Eur. Polym. J., 77, 43 (2016)