Journal of Industrial and Engineering Chemistry, Vol.18, No.2, 674-679, March, 2012
Effects of oxyfluorination on a multi-walled carbon nanotube electrode for a high-performance glucose sensor
E-mail:
A glucose sensor electrode was prepared with multi-walled carbon nanotubes (MWNTs) because of its effect on surface modification through oxyfluorination. The oxyfluorination of MWNTs was carried out with F2:O2 ratios of 7:3, 5:5 and 3:7, which are labeled F7O3-MWNT, F5O5-MWNT, and F3O7-MWNT, based on the oxyfluorination conditions. The hydrophilic functional groups were introduced effectively on the hydrophobic carbon surface. In addition, the amorphous area of the MWNTs was affected by oxyfluorination. The reactivity of the glucose sensor was affected by the oxyfluorination treatment and the existence of amorphous on MWNTs. The optimum O/F percentage was approximately 50%. Therefore, the oxyfluorination conditions are important with amorphous MWNTs. The sensitivity was improved based on the effects of improved interface affinity between the enzyme and the carbon electrode. In addition, the presence of an amorphous area on MWNTs seems to be beneficial for efficient glucose oxidase immobilization, which results in high-performance glucose sensing.
- Xu F, Wang F, Gao MN, Jin LT, Jin JY, Talanta., 57, 365 (2002)
- Lopez-Avila V, Hill HH, Anal. Chem., 69, 289 (1997)
- Melo JVD, Cosnier S, Mousty C, Martelet C, Jaffrezic-Renaulta N, Anal. Chem., 74, 4037 (2002)
- Clark LC, Lyons C, Ann. N. Y. Acad. Sci., 102, 29 (1962)
- Liu CC, Lahoda EJ, Galasco RT, Wingard LB, Biotechnol. Bioeng., 17, 1695 (1975)
- Savitri D, Mitra CK, Bioelectrochemistry., 47(1), 67 (1998)
- Lahoda EJ, Liu CC, Wingard LB, Biotechnol. Bioeng., 17, 413 (1975)
- Rosenzweig Z, Kopelman R, Sens. Actuators B: Chem., 475 (1996)
- Manedov M, Kotov NA, Prato M, Guldi KM, Wichksted JP, Hirsch A, Nat.Mater., 1(3), 190 (2002)
- Zeng T, Claus T, Zhang F, Du W, Cooper KL, Smart Mater. Struct., 10, 780 (2001)
- Saito T, Matsushige K, Tanake K, Physica B., 323, 280 (2002)
- Zheming G, Chunzhong L, Gengchao W, Ling Z, Qilin C, Xiaohui L, Wendong W, Shilei J, J. Ind. Eng. Chem., 16(1), 10 (2010)
- Kim YY, Yun J, Lee YS, Kim HI, Carbon Lett., 12(1), 48 (2011)
- Lee JM, Kim SJ, Lim JW, Kang TH, Nho YC, Lee YS, J. Korean Ind. Eng. Chem., 15, 66 (2009)
- Cheng T, Lin H, Chuang M, Mater. Lett., 58, 650 (2004)
- Seguchi T, Yagi T, Ishikawa S, Sano Y, Phys. Chem., 63, 35 (2002)
- Jung MJ, Lim JW, Park IJ, Lee YS, Appl. Chem. Eng., 21(3), 317 (2010)
- Im JS, Kim SJ, Kang PH, Lee YS, J. Korean Ind. Eng. Chem., 15, 699 (2009)
- Anand M, Hobbs JP, Brass IJ, Banks RE, Smart BE, Tatlow JC, Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press, New York (1994)
- Lee YS, Lee BK, Carbon., 40, 2461 (2002)
- Im JS, Park SJ, Lee YS, Int. J. Hydrogen Energy., 34, 1423 (2009)
- Wilson R, Turner APF, Biosens. Bioelectron., 7, 165 (1992)
- Wu Z, Li J, Timmer D, Lozano K, Bose S, Int. J. Adhes. Adhes., 29, 488 (2009)
- Nakajima T, Fluorine.Carbon and Fluorine.Carbon Materials, Marcel Dekker, New York (1995)
- Park SJ, Seo MK, Lee YS, Carbon., 41, 723 (2003)
- Lee JM, Kim JW, Lim JS, Kim TJ, Kim SD, Park SJ, Lee YS, Carbon Lett., 8(2), 120 (2007)
- Misra A, Tyagi AK, Singh MK, Misra DS, Diamond Relat. Mater., 15, 385 (2006)
- Kim B, Sigmund WM, Langmuir, 20(19), 8239 (2004)
- Afre RA, Soga T, Jimbo T, Kumar M, Ando Y, Sharon M, Chem. Phys. Lett., 414(1-3), 6 (2005)
- Zhang L, Liao V, Yu Z, Carbon., 48, 2582 (2010)
- Im JS, Kang SC, Bai BC, Suh JK, Lee YS, Int. J. Hydrogen Energy., 36, 1560 (2011)
- Wang J, Chem. Rev., 108(2), 814 (2008)
- Khan R, Kaushik A, Solanki PR, Ansari AA, Pandey MK, Malhotra BD, Anal.Chem. Acta., 616, 207 (2008)
- Liu X, Peng Y, Qu X, Ai S, Han R, Zhu X, J. Electroanal. Chem., 654, 72 (2011)
- Saha S, Arya SK, Singh SP, Sreenivas K, Malhotra BD, Gupta V, Anal. Chim. Acta., 653, 212 (2009)