화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.3, 365-370, June, 2019
초음파 조사에 의한 에폭사이드 비대칭 고리열림 반응의 속도 증진 효과
Accelerating Effects of Ultrasonic Irradiation on Reaction Rates for the Asymmetric Ring Opening Reaction of Epoxides
E-mail:
초록
본 연구에서는 키랄 코발트 살렌 촉매 존재 하에서 에폭사이드 화합물의 비대칭 고리 열림 반응(EKR)에 미치는 초음파 조사 효과를 기존의 기계적 교반법과 비교하여 고찰하였다. 촉매의 활성을 비교하기 위하여 AlCl3, BF3 및 니트로벤젠술폰산(NBSA)이 결합된 키랄 코발트 살렌을 합성 사용하였으며, 반응물로는 에피클로로히드린(ECH), 에폭시페녹시프로판(EPP) 및 프로필렌 옥사이드(PO)를 친핵체로는 물과 메탄올을 각각 사용하여 EKR 반응을 수행하였다. 이반응에서 반응물을 혼합시키는 조작의 일환으로써 초음파를 반응계에 적용한 경우가 통상의 기계적인 교반보다 반응 속도를 현저히 증가시키는 결과를 나타내었다. 최고의 거울상 이성체 과잉도 값인 99 ee%를 얻는데 요하는 반응시간은 초음파를 적용하였을 때가 격렬한 물리적 교반을 행한 경우보다 60% 이상 단축되었으며, 이는 용액 중에서 발생하는 초음파의 공동화 현상에 의해 형성된 강한 전단력에 의한 결과로 해석된다.
In this study, effects of the ultrasonic irradiation during the reaction process were investigated for the enantioselective kinetic resolution (EKR) reaction of racemic epoxides in the presence of chiral cobalt salen catalysts, as compared to that of using the conventional mechanical stirring. In order to compare catalytic activities, the chiral cobalt salen complexes having AlCl3-, BF3- and nitrobenzenesulfonic acid (NBSA) were synthesized and used as catalysts, and then three kinds of the racemic epoxides such as ephichlorohydrine (ECH), epoxy phenoxypropane (EPP) and propylene oxide (PO) were used as reactants. In addition, EKR reactions have been performed using the water and methanol as nucleophiles, respectively. The unique contribution of ultrasonic irradiation as a powerful mixing medium was evaluated in this study to improve the kinetics in comparison to the conventional mechanical agitation during EKR reactions. The reaction time to obtain the highest 99 ee% became shorten more than that of above 60%, when the ultrasonic irradiation was used. This result may be interpreted by the cavitation effect of ultrasound in the solution, generating a powerful shear force for the very violent mixing.
  1. Noyori R, Asymmetric Catalysis in Organic Synthesis, John Wiely, York, USA (1994).
  2. Shon RA, Chirotechnology; Industrial Synthesis of Optical Active Compounds, Marcel Dekker, New York, USA (1994).
  3. Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN, Science, 277(5328), 936 (1997)
  4. Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE, Furrow ME, Jacobsen EN, J. Am. Chem. Soc., 124(7), 1307 (2002)
  5. Ready JM, Jacobsen EN, J. Am. Chem. Soc., 123(11), 2687 (2001)
  6. Furrow ME, Schaus SE, Jacobsen EN, J. Org. Chem., 63, 6776 (1998)
  7. Keith JM, Larrow JF, Jacobsen EN, Adv. Synth. Catal., 343, 5 (2001)
  8. Shin CK, Kawthekar RB, Kim GJ, J. Korean Ind. Eng. Chem., 18(3), 218 (2007)
  9. Lee KY, Kawthekar RB, Kim GJ, J. Korean Ind. Eng. Chem., 18(6), 562 (2007)
  10. Thakur SS, Li W, Kim SJ, Kim GJ, Tetrahedron Lett., 46, 2263 (2005)
  11. Thakur SS, Li W, Shin CK, Kim GJ, Chirality, 18, 37 (2006)
  12. Thakur SS, Chen SW, Li W, Shin CK, Kim SJ, Koo YM, Kim GJ, J. Organomet. Chem., 691, 1862 (2006)
  13. Shin SJ, Jeong BJ, J. Korean Orthop. Assoc., 48, 325 (2013)
  14. Peshkovsky AS, Peshkovsky SL, Acoustic Cavitation Theory and Equipment Design Principles for Industrial Applications of High-intensity Ultrasound, (2010).
  15. Peshkovsky AS, Peshkovsky SL, Sonochemistry: Theory, Reactions and Syntheses, and Applications, (2010).
  16. Kumar A, Awatar MR, Synlett, 6, 883 (2008)
  17. Bartoli G, Bosco M, Carlone A, Locatelli M, Melchiorre P, Sambri L, Org. Lett., 6, 3973 (2004)
  18. Ready JM, Jacobsen EN, J. Am. Chem. Soc., 121(25), 6086 (1999)
  19. Shin CK, Kim SJ, Kim GJ, Tetrahedron Lett., 45, 7429 (2004)
  20. Lee KY, Kawthekar RB, Kim GJ, J. Korean Ind. Eng. Chem., 18(4), 330 (2007)