화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.4, 559-566, July, 2019
자외선 경화형 감압점착제의 내열성과 점착 물성에 미치는 유/무기 복합가교제의 영향
Effect of Organic/Inorganic Hybrid Crosslinkers on Thermal Stability and Adhesive Property of UV-Curable Pressure Sensitive Adhesives
E-mail:
초록
전자기기의 경량화 및 고기능화에 따라, 반도체 분야에서도 고성능 및 고집적이 필요한 다중 칩 패키지 기술이 중요해지고 있다. 반도체 제조에 사용되는 웨이퍼가 더욱 얇아지고 다중 칩을 형성하는 과정에서 고온의 공정을 거치게 됨에 따라, 이러한 공정에 사용되는 자외선 경화형 아크릴 점착제에는 정교하게 조절된 점착물성 뿐만 아니라 내열특성도 요구되고 있다. 자외선 경화형 아크릴 점착제의 내열특성을 향상시키기 위해 유기 및 무기재료를 복합화하여 가교제로 적용하고, 가교제 함량 및 가교조건이 점착제의 접착물성과 내열특성에 미치는 영향을 조사하였다. 가교제 함량의 증가와 유/무기 복합가교제의 도입으로 자외선 경화형 아크릴 점착제의 내열성 및 등온조건 열안정성이 향상되었다. 반면, 자외선 경화형 아크릴 점착제의 가교제 함량 및 자외선 조사량 증가에 의해 박리력과 초기 점착력은 감소하였다.
According to the trend of light-weight and high performance of electronic devices, multi-chip packaging technology, which is essential to high performance and large scale integration, becomes more important in semiconductor industry. Wafers used in semiconductor manufacture become thinner and high temperature process is necessary in multi-chip packaging. Therefore, UV-curable pressure sensitive adhesive (PSA), which is used in semiconductor manufacture, needs both precisely controlled adhesion and thermal properties. In order to improve the thermal properties of UV-curable PSA, organic/inorganic hybrid crosslinkers were applied and the effect of crosslinker content and curing condition on adhesion and thermal properties of adhesive was investigated. Both thermal property and stability in isothermal conditions of UV-curable PSA were improved by increasing the content of crosslinking agent and applying the organic/inorganic hybrid crosslinkers. Both peel strength and initial tackiness of UV-curable PSA were decreased by increasing the content of crosslinking agent and UV irradiation.
  1. Lim DH, Kim SM, Do HS, Park YJ, Joo HS, Kim HJ, Trends Agric. Life Sci., 3, 28 (2005)
  2. Okido M, Adhesion, 43, 23 (1999)
  3. Lee SW, Park JW, Kim HJ, Kim HI, Ryu CM, J. Adhes. Interf., 11, 3 (2010)
  4. Kauffman T, Adhesives Age, Sep., 8 (1999).
  5. Lee SH, Lee SK, Hwang TS, Appl. Chem. Eng., 24(2), 148 (2013)
  6. Doba T, J. Adh. Soc. Jap., 35, 521 (1999)
  7. Kimura K, J. Adh. Soc. Jap., 35, 323 (1999)
  8. Ebe K, Seno H, Horigome K, J. Appl. Polym. Sci., 90(2), 436 (2003)
  9. Horigome K, Ebe K, Kuroda S, J. Appl. Polym. Sci., 93(6), 2889 (2004)
  10. Coyard H, Deligny P, Tuck N, Resins for Surface Coatings: Acrylics and Epoxies, 2nd ed., SITA Technology Ltd., London, 2001.
  11. Numazawa N, Mineura Y, US Patent 5,955,512 (1997).
  12. Noguchi H, Numazawa N, Mineura Y, Ebe K, US Patent 5,976,691 (1997).
  13. Umehara N, Amagai M, Kobayashi M, Ebe K, US Patent 6,007,920 (1998).
  14. Decke C, Polym. Intl., 45, 133 (1998)
  15. Kim IB, Lee MC, Korean Chem. Eng. Res., 46(1), 76 (2008)
  16. Ihm DW, Text. Sci. Eng., 38, 59 (2001)
  17. Aviles F, Sierra-Chi CA, Nistal A, May-Pat A, Rubio F, Rubio J, Carbon, 57, 520 (2013)
  18. Kim DB, Polym. Korea, 39(3), 514 (2015)
  19. Bae JY, Yang SC, Jin JH, Jung KH, Kim JS, Bae BS, J. Sol-Gel Sci. Technol., 58, 114 (2011)
  20. Bourgeat-Lami E, Tissot I, Lefebvre F, Macromolecules, 35(16), 6185 (2002)
  21. Wu Z, Zhong H, Yuan X, Wang H, Wang L, Chen X, Zeng G, Wu Y, Water Res., 67, 330 (2014)
  22. Aviles F, Cauich-Rodriguez JV, Rodriguez-Gonzalez JA, May-Pat A, Polym. Lett., 5, 766 (2011)
  23. Joo HS, Park YJ, Do HS, Kim HJ, Song SY, Choi KY, J. Adhes. Sci. Technol., 21(7), 575 (2007)
  24. Wang X, Xing WY, Song L, Yu B, Hu Y, Yeoh GH, React. Funct. Polym., 73(6), 854 (2013)
  25. Hu L, Shi W, Composites Part A, 42, 631 (2011)
  26. Villar-Rodil S, Paredes J, Martinez-Alonso A, Tascon J, J. Mater. Chem., 19, 3591 (2009)
  27. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'homme RK, Brinson LC, Nat. Nanotechnol., 3(6), 327 (2008)
  28. McLauchlin A, Thomas NL, Polym. Degrad. Stabil., 94, 868 (2009)
  29. Park GH, Kim KT, Ahn YT, Lee H, Jeong HM, J. Ind. Eng. Chem., 20(6), 4108 (2014)