화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.4, 421-428, August, 2019
강황과 울금으로부터 추출된 커큐민의 색도분석 : 반응표면분석법을 이용한 최적화
Chromaticity Analysis of Curcumin Extracted from Curcuma and Turmeric: Optimization Using Response Surface Methodology
E-mail:
초록
본 연구에서는 천연색소인 커큐민을 포함하고 있는 천연물인 강황과 울금으로부터 황색색소(목표색, L = 87.0, a = 7.43, b = 88.2)를 추출하였다. 기초실험을 통해 반응표면분석법에 사용될 계량인자의 범위는 두 천연물 모두 pH (3~7), 추출온도(40~70 ℃)로 설정하였다. 목표색에 가장 근접한 최적추출조건을 얻기 위해 반응표면분석법 중 중심합성계획모델을 접목하여 추출공정을 최적화하였다. 결과값 및 회귀방정식을 통해 주효과도 및 교호효과도를 분석해 강황 및 울금의 색공간과 색차는 . 값에 가장 큰 영향을 끼치는 것을 알았다. 또한 반응치인 색좌표 L, a, b를 모두 만족하는 최적조건은 강황의 경우 pH = 3.43, 추출온도 54.8 ℃에서의 이론적 수치L (74.67), a (5.69), b (70.08)이었으며, 이 조건에서 실제실험을 수행한 결과 L(72.92), a(5.32), b (72.17)로 측정되었다. 울금의 경우에는 pH = 5.22, 추출온도 50.4 ℃에서의 이론적 수치 색좌표는 L (82.02), a (7.43), b (72.86)이었으며, 실제실험을 수행한 결과 L (81.85), a (5.39), b (71.58)로 나타나 두 경우 모두 1% 이내의 오차범위를 나타내었다. 따라서 천연원료의 색소추출공정의 최적화 과정으로 반응표면분석법 중 중심합성계획모델을 적용할 경우 낮은 오차율을 얻을 수 있었다.
This paper describes a methode to extract yellow pigment from curcuma and turmeric containing natural color curcumin whose target color indexes of L, a, and B were 87.0 7.43, and 88.2, respectively. The pH range and extraction temperature used for the reaction surface analysis method were from pH 3 to pH 7 and between 40 and 70 °C, respectively for both natural products. A central synthesis planning model combined with the method was used to obtain optimal extraction conditions to produce the color close to target. Results and regression equations show that the color space and difference of curcuma and turmeric have the greatest influence on the value. In the case of curcuma, the optimum conditions to satisfy all of the response theoretical values of color coordinates of L (74.67), a (5.69), and ? (70.08) were at the pH and temperature of 3.43 and 54.8 °C, respectively. The experimentally obtained L, a, and b, values under optimal conditions were 72.92, 5.32, and 72.17, respectively. For the case of turmeric, theoretical numerical color coordinates of L, a, and b, under the pH of 5.22 and temperature of 50.4 °C were 82.02, 7.43, and 72.86 respectively. Whereas, the experiment results were L (81.85), a (5.39), and b (71.58). Both cases showed an error range within 1%. Therefore, it is possible to obtain a low error rate when applying the central synthesis planning model to the reaction surface analysis method as an optimization process of the dye extraction of natural raw materials.
  1. Kamel MM, El-Shishtawy RM, Yussef BM, Mashaly H, Dyes Pigment., 65, 103 (2005)
  2. Xia J, Wang H, Zhang QM, Zheng Z, Han ZM, Brain Res., 1642, 131 (2016)
  3. Hong IK, Jeon H, Lee SB, J. Ind. Eng. Chem., 24, 326 (2015)
  4. Ghouila H, Meksi N, Haddar W, Mhenni MF, Jannet HB, Ind. Crop. Prod., 35(1), 31 (2012)
  5. Manolova Y, Deneva V, Antonov L, Drakalska E, Momekova D, Lambov N, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 132, 815 (2014)
  6. Weber WM, Hunsaker LA, Abcouwer SF, Deck LM, Vander DL, Bioorg. Med. Chem., 13, 3811 (2005)
  7. Dutta S, Padhye S, Priyadarsini KI, Newton C, Bioorg. Med. Chem. Lett., 15, 2738 (2005)
  8. Belwal T, Dhyani P, Bhatt ID, Rawal RS, Pande V, Food Chem., 207, 115 (2016)
  9. Lee SB, Lee WJ, Hong IK, Appl. Chem. Eng., 29(3), 283 (2018)
  10. Alberti A, Zielinski AAF, Zardo DM, Demiate IM, Nogueira A, Mafra LI, Food Chem., 49, 151 (2014)
  11. Ilaiyaraja N, Likhith KR, Babu GRS, Khanum F, Food Chem., 173, 348 (2015)
  12. Cao J, Wu Y, Jin Y, Yilihan P, Huang W, J. Taiwan Inst. Chem. Eng., 45(3), 860 (2014)
  13. McGrath JR, Beck M, Hill ME, J. Archaeol. Sci. Rep., 14, 432 (2017)
  14. Perez MDM, Ghinea R, Rivas MJ, Yebra A, Ionescu AM, Paravina RD, Herrera LJ, Dent. Mater., 32(3), 461 (2016)