화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.78, 344-351, October, 2019
Identification of common and distinct features of ligand-binding sites in kernel and outlier lipocalins
E-mail:
Lipocalins are potential targets for drug development, and therefore it is important to understand the common and distinct features of their ligand-binding sites. Here, the sequence and structural features of ligand-binding sites in kernel and outlier lipocalins were analyzed and compared. Ligand-binding sites of kernel lipocalins were sequentially more diverse than outlier lipocalins. The ligand-binding sites of the two subgroup lipocalins were relatively hydrophobic and exhibited positive or neutral net-charges, well- correlated with the hydrophobic ligands with neutral or acidic functional groups. There was a propensity of three hydrophobic residues, Phe, Leu and Tyr in the ligand-interacting residues of kernel lipocalins, whereas outlierlipocalins showed relatively lower propensity. Finally, six and ten crucial ligand-interacting positions were identified in the kernel and outlier lipocalins, respectively. These identified features are expected to be a theoretical reference for the engineering and exploration of kernel and outlier lipocalins.
  1. Flower DR, Biochem. J., 318, 1 (1996)
  2. Flower DR, North ACT, Sansom CE, BBA.Protein Struct. M, 1482, 9 (2000)
  3. Flower DR, J. Mol. Recognit., 8, 185 (1995)
  4. Akerstrom B, Flower DR, Salier JP, BBA.Protein Struct. M, 1482, 1 (2000)
  5. Beste G, Schmidt FS, Stibora T, Skerra A, Proc. Natl. Acad. Sci. U. S. A., 96, 1898 (1999)
  6. Gebauer M, Schiefner A, Matschiner G, Skerra A, J. Mol. Biol., 425, 780 (2013)
  7. Eggenstein E, Eichinger A, Kim HJ, Skerra A, J. Struct. Biol., 185(2), 203 (2014)
  8. Schonfeld D, Matschiner G, Chatwell L, Trentmann S, Gille H, Hulsmeyer M, Brown N, Kaye PM, Schlehuber S, Hohlbaum AM, Skerra A, Proc. Natl. Acad. Sci. U. S. A., 106, 8198 (2009)
  9. D’Anna R, Baviera G, Giordano D, Todarello G, Corrado F, Buemi M, Acta Obstet. Gynecol. Scand., 87, 1370 (2008)
  10. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Borasch J, Devarajan P, Lancet, 365, 1231 (2005)
  11. Ramoni R, Bellucci S, Grycznyski I, Grycznyski Z, Grolli S, Staiano M, et al., J. Phys. Condens. Matter, 19, 395012 (2007)
  12. Rothe C, Skerra A, Biodrugs, 32, 233 (2018)
  13. Bauvois B, Susin SA, Cancers, 10, 336 (2018)
  14. Lopezboado YS, Tolivia J, Lopezotin C, J. Biol. Chem., 269, 26871 (1994)
  15. Lehmanmckeeman LD, Caudill D, Toxicol. Appl. Pharm., 116, 170 (1992)
  16. Flower DR, Febs Lett., 354, 7 (1994)
  17. Flower DR, North ACY, Attwood TK, Protein Sci., 2, 753 (1993)
  18. Holm L, Sander C, Trends Biochem. Sci., 20, 478 (1995)
  19. Wallace AC, Laskowski RA, Thornton JM, Protein Eng., 8, 127 (1995)
  20. Campanella JJ, Bitincka L, Smalley J, BMC Bioinformatics, 4, 29 (2003)
  21. Stothard P, Biotechniques, 28, 1102 (2000)
  22. Schrodinger LLC, The PyMOL Molecular Graphics System, Version 1.8, 2015.
  23. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li WZ, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG, Mol. Syst. Biol., 7, 539 (2011)
  24. Loch JI, Polit A, Bonarek P, Olszewska D, Kurpiewska K, Dziedzicka-Wasylewska M, Lewinski K, Int. J. Biol. Macromol., 50, 1095 (2012)
  25. Cozzini P, Fornabaio M, Marabotti A, Abraham DJ, Kellogg GE, Mozzarelli A, J. Med. Chem., 45, 2469 (2002)