Polymer(Korea), Vol.43, No.5, 787-792, September, 2019
도파민 단량체 공중합을 기반으로 하는 항산화 콘택트렌즈 제조
Preparation of Antioxidant Hydrogel Contact Lenses via Copolymerization of Dopamine Monomer
E-mail:
초록
도파민 단량체를 합성한 후, 2-hydroxyethyl methacrylate(HEMA), ethylene glycol dimethacrylate(EGDMA), 2-methacryloyloxyethyl phosphorylcholine(MPC)과의 공중합을 통해 항산화 콘택트렌즈를 제조하였다. 렌즈 합성 시, 도파민 무게%를 0.1, 0.3, 0.5%로 조절하였고, MPC는 5%로 고정하여, 3종의 렌즈를 준비하였다. 제조된 렌즈들은 90% 이상의 가시광선 투과율을 보였다. 50% 정도의 함수율과 낮은 접촉각(55o-63o)을 통해 렌즈 친수성이 향상됨을 알 수 있었다. 라디칼 소거 분석법을 이용하여 항산화 특성을 확인한 결과, 0.1% 도파민 그룹을 포함하는 렌즈의 경우에도 반응 1시간만에 소거율이 90%까지 증가함을 알 수 있었다. 본 결과는 아스코빅산의 항산화 기능대비 98%에 해당하는 것으로, 제조된 콘택트렌즈의 우수한 항산화 능력을 나타낸다.
In this work, we prepared antioxidant hydrogel contact lenses through the copolymerization of a synthesized dopamine monomer, 2-hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC). Three contact lenses were made by varying the weight ratio (0.1%, 0.3%, 0.5%) of dopamine monomer at a 5 wt% of MPC. The prepared lenses exhibited visible light transmittance values higher than 90%. In addition, they exhibited high water contents of about 50% and low contact angles (55o-63o), which indicated excellent hydrophilicity. The antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The antioxidant lenses removed most of DPPH radicals within 1 h. The measured antioxidant activities are comparable to 98% of ascorbic acid. Consequently, the prepared antioxidant contact lenses showed excellent antioxidant activities, although a small amount of dopamine group was employed.
- Seidel JM, Malmonge SM, Mater. Res., 3, 79 (2000)
- Khodr B, Khalil Z, Free Radical Biol. Med., 30, 1 (2001)
- Gordillo GM, Sen CK, Am. J. Surg., 186, 259 (2003)
- Apel K, Hirt H, Annu. Rev. Plant Biol., 55, 373 (2004)
- Senel O, Cetinkale O, Ozbay G, Ahcioglu F, Bulan R, Ann. Plast. Surg., 35, 443 (1997)
- Llorens E, del Valle LJ, Puiggali J, Macromol. Res., 22(4), 388 (2014)
- Kawabata J, Okamoto Y, Kodama A, Makimoto T, Kasai T, J. Agric. Food Chem., 50, 5468 (2002)
- Giannakopoulos E, Christoforidis KC, Tsipis A, Jerzykiewicz M, Deligiannakis Y, J. Phys. Chem. A, 109(10), 2223 (2005)
- Scoponi M, Cimmino S, Kaci M, Polymer, 41(22), 7969 (2000)
- Curcio M, Cirillo G, Parisi OI, Iemma F, Spizzirri UG, Altimari I, Picci N, Puoci F, J. Funct. Biomater., 2, 1 (2011)
- Kang B, Vales TP, Cho BK, Kim JK, Kim HJ, Molecules, 22, 1976 (2017)
- Patil N, Falentin-Daudre C, Jerome C, Detrembleur C, Polym. Chem., 6, 2919 (2015)
- Kim HJ, Ryu GC, Jeong KS, Jun J, Macromol. Res., 23(1), 74 (2015)
- Polakova L, Raus V, Kostka L, Braunova A, Pilar J, Lobaz V, Panek J, Sedlakova Z, Biomacromolecules, 16(9), 2726 (2015)
- Papariello GJ, Janish MAM, Anal. Chem., 37, 899 (1965)
- Soares AA, de Souza CGM, Daniel FM, Ferrari GP, da Costa SMG, Peralta RM, Food Chem., 112, 775 (2009)
- Kim BR, Kang BM, Vales TP, Yang SK, Lee JM, Kim HJ, Macromol. Res., 26(1), 35 (2018)
- Hu Y, Wang D, Li G, Anal. Methods, 7, 6103 (2015)
- Song KS, Kim TH, Sung AY, J. Korean Chem. Soc., 57, 300 (2013)
- Lin CH, Cho HL, Yeh YH, Yang MC, Colloids Surf. B: Biointerfaces, 136, 735 (2015)
- Musgrave CSA, Fang F, Materials, 12, 261 (2019)
- Arnao MB, Cano A, Acosta M, Food Chem., 73, 239 (2001)
- Nicklisch SCT, Waite JH, MethodsX, 1, 233 (2014)
- Iuga C, Alvarez-Idaboy JR, Vivier-Bunge A, J. Phys. Chem. B, 115(42), 12234 (2011)