화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.5, 787-792, September, 2019
도파민 단량체 공중합을 기반으로 하는 항산화 콘택트렌즈 제조
Preparation of Antioxidant Hydrogel Contact Lenses via Copolymerization of Dopamine Monomer
E-mail:
초록
도파민 단량체를 합성한 후, 2-hydroxyethyl methacrylate(HEMA), ethylene glycol dimethacrylate(EGDMA), 2-methacryloyloxyethyl phosphorylcholine(MPC)과의 공중합을 통해 항산화 콘택트렌즈를 제조하였다. 렌즈 합성 시, 도파민 무게%를 0.1, 0.3, 0.5%로 조절하였고, MPC는 5%로 고정하여, 3종의 렌즈를 준비하였다. 제조된 렌즈들은 90% 이상의 가시광선 투과율을 보였다. 50% 정도의 함수율과 낮은 접촉각(55o-63o)을 통해 렌즈 친수성이 향상됨을 알 수 있었다. 라디칼 소거 분석법을 이용하여 항산화 특성을 확인한 결과, 0.1% 도파민 그룹을 포함하는 렌즈의 경우에도 반응 1시간만에 소거율이 90%까지 증가함을 알 수 있었다. 본 결과는 아스코빅산의 항산화 기능대비 98%에 해당하는 것으로, 제조된 콘택트렌즈의 우수한 항산화 능력을 나타낸다.
In this work, we prepared antioxidant hydrogel contact lenses through the copolymerization of a synthesized dopamine monomer, 2-hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC). Three contact lenses were made by varying the weight ratio (0.1%, 0.3%, 0.5%) of dopamine monomer at a 5 wt% of MPC. The prepared lenses exhibited visible light transmittance values higher than 90%. In addition, they exhibited high water contents of about 50% and low contact angles (55o-63o), which indicated excellent hydrophilicity. The antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The antioxidant lenses removed most of DPPH radicals within 1 h. The measured antioxidant activities are comparable to 98% of ascorbic acid. Consequently, the prepared antioxidant contact lenses showed excellent antioxidant activities, although a small amount of dopamine group was employed.
  1. Seidel JM, Malmonge SM, Mater. Res., 3, 79 (2000)
  2. Khodr B, Khalil Z, Free Radical Biol. Med., 30, 1 (2001)
  3. Gordillo GM, Sen CK, Am. J. Surg., 186, 259 (2003)
  4. Apel K, Hirt H, Annu. Rev. Plant Biol., 55, 373 (2004)
  5. Senel O, Cetinkale O, Ozbay G, Ahcioglu F, Bulan R, Ann. Plast. Surg., 35, 443 (1997)
  6. Llorens E, del Valle LJ, Puiggali J, Macromol. Res., 22(4), 388 (2014)
  7. Kawabata J, Okamoto Y, Kodama A, Makimoto T, Kasai T, J. Agric. Food Chem., 50, 5468 (2002)
  8. Giannakopoulos E, Christoforidis KC, Tsipis A, Jerzykiewicz M, Deligiannakis Y, J. Phys. Chem. A, 109(10), 2223 (2005)
  9. Scoponi M, Cimmino S, Kaci M, Polymer, 41(22), 7969 (2000)
  10. Curcio M, Cirillo G, Parisi OI, Iemma F, Spizzirri UG, Altimari I, Picci N, Puoci F, J. Funct. Biomater., 2, 1 (2011)
  11. Kang B, Vales TP, Cho BK, Kim JK, Kim HJ, Molecules, 22, 1976 (2017)
  12. Patil N, Falentin-Daudre C, Jerome C, Detrembleur C, Polym. Chem., 6, 2919 (2015)
  13. Kim HJ, Ryu GC, Jeong KS, Jun J, Macromol. Res., 23(1), 74 (2015)
  14. Polakova L, Raus V, Kostka L, Braunova A, Pilar J, Lobaz V, Panek J, Sedlakova Z, Biomacromolecules, 16(9), 2726 (2015)
  15. Papariello GJ, Janish MAM, Anal. Chem., 37, 899 (1965)
  16. Soares AA, de Souza CGM, Daniel FM, Ferrari GP, da Costa SMG, Peralta RM, Food Chem., 112, 775 (2009)
  17. Kim BR, Kang BM, Vales TP, Yang SK, Lee JM, Kim HJ, Macromol. Res., 26(1), 35 (2018)
  18. Hu Y, Wang D, Li G, Anal. Methods, 7, 6103 (2015)
  19. Song KS, Kim TH, Sung AY, J. Korean Chem. Soc., 57, 300 (2013)
  20. Lin CH, Cho HL, Yeh YH, Yang MC, Colloids Surf. B: Biointerfaces, 136, 735 (2015)
  21. Musgrave CSA, Fang F, Materials, 12, 261 (2019)
  22. Arnao MB, Cano A, Acosta M, Food Chem., 73, 239 (2001)
  23. Nicklisch SCT, Waite JH, MethodsX, 1, 233 (2014)
  24. Iuga C, Alvarez-Idaboy JR, Vivier-Bunge A, J. Phys. Chem. B, 115(42), 12234 (2011)