화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.9, 542-546, September, 2019
Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과
Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties
E-mail:
We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : n+-i(QD)-n+ QDIP with undoped quantum dot(QD) active region and n+-n.(QD)-n+ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at 2×1018/cm3. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the n+-n-(QD)-n+ structure, Si dopant is directly doped in InAs QD at 2×1017/cm3. Undoped and doped QDIPs show a photoresponse peak at about 8.3 μm, ranging from 6~10 μm at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.
  1. Yuan H, Apgar G, Kim J, Laquindanum J, Nalavade V, Beer P, Kimchi J, Wong T, Proc. SPIE, 6940, 69403C (2008)
  2. Norton P, Campbell J III, Horn S, Reago D, Proc. SPIE, 4130, 226 (2000)
  3. Horn S, Norton P, Cincotta T, Stoltz AJ, Benson JD, Perconti P, Campbell J III, Proc. SPIE, 5074, 44 (2003)
  4. Radford WA, Patten EA, King DF, Pierce GK, Vodicka J, Goetz P, Venzor G, Smith EP, Graham R, Johnson SM, Roth J, Nosho B, Jensen J, Proc. SPIE, 5783, 325 (2005)
  5. Rogalski A, Prog. Quantum Electronics, 27, 59 (2003)
  6. Levine BF, J. Appl. Phys., 74, R1 (1993)
  7. Madhukar A, Campbell J, Kim ET, Chen ZH, Ye J, p. 45, Artech House, Inc., Boston (2004).
  8. Kim ET, Chen ZH, Madhukar A, Appl. Phys. Lett., 79, 3341 (2001)
  9. Ye Z, Campbell J, Chen ZH, Kim ET, Madhukar A, IEEE J. Quantum Electron., 38, 1234 (2002)
  10. Kim ET, Chen ZH, Ho M, Madhukar A, J. Vac. Sci. Technol. B, 20(3), 1188 (2002)
  11. Lee SJ, Kim JO, Kim YG, Noh SK, Kyu YH, Choi SM, Choe JW, J. Korean Phys. Soc., 46, 1396 (2005)
  12. Kim JO, Lee SJ, Noh SK, Ryu YH, Choi SM, Choe JW, J. Korean Phys. Soc., 47, 838 (2005)
  13. Wang HL, Yang FH, Feng SL, J. Cryst. Growth, 212(1-2), 35 (2000)
  14. Phillips J, Kamath K, Zhou X, Chervels N, Bhattacharya P, Appl. Phys. Lett., 71, 2079 (1997)
  15. Seo DB, Hwang JH, Oh BR, Noh SK, Kim JO, Lee SJ, Kim ET, Korean J. Mater. Res., 28(11), 659 (2018)
  16. Nguyen TD, Kim JO, Kim YH, Kim ET, Nguyen QL, Lee SJ, AIP Adv., 8, 025015 (2018)
  17. Attaluri RS, Annamalai S, Posani KT, Stintz A, Krishna S, J. Appl. Phys., 99, 083105 (2006)
  18. Seo DB, Nguyen TD, Kim ET, Int. J. Nanotechnol., 13, 385 (2016)