Applied Chemistry for Engineering, Vol.30, No.5, 620-626, October, 2019
일산화탄소 산화반응을 위한 Cu/CeO2 촉매의 반응특성
Reaction Characteristics of Cu/CeO2 Catalysts for CO Oxidation
E-mail:
초록
본 연구에서는 Cu/CeO2 촉매의 함량과 소성온도를 제어함으로써 촉매의 구조적 특성이 CO 산화반응에 미치는 영향과, 100~300 ℃의 온도범위에서 촉매의 CO 전환율을 평가하였다. 촉매의 구조적 특성이 변화함에 따라 촉매의 화학적 특성에 미친 영향을 확인하기 위해 XRD, Raman, BET, H2-TPR, XPS 분석을 수행하였다. 이때, Cu와 Ce의 치환 결합이 형성되는 것을 확인하였고, Cu를 5 wt.% 담지한 촉매를 400 ℃로 소성하였을 때 Cu와 Ce의 결합을 많이 이루고 있는 것으로 판단하였다. Cu와 Ce의 결합은 Raman 분석 상에서 peak의 이동과, H2-TPR에서 나타난 peak를 통해 확인하였다. 또한 산화상태 분석을 통하여 치환 결합을 쉽게 이룰 수 있다고 알려져 있는 Ce3+종과 반응에 더욱 쉽게 기인할 수 있는 표면 산소종(surface labile oxygen)이 많이 형성되어 있는 것을 확인하였다. 이때, 본 연구에서 사용한 촉매의 CO 전환율은 150 ℃에서 100%에 가까운 수치를 나타내는 것을 확인하였다.
In this study, the effects of the structural properties of the catalyst on CO oxidation reaction by controlling the Cu/CeO2 catalyst amount and calcination temperature were studied, and also the CO conversion rate of the catalyst at the temperature range of 100~300 ℃ was evaluated. XRD, Raman, BET, H2-TPR, and XPS analyses were performed to confirm the effect of changes in the structural properties on the chemical properties of the catalyst. The result confirmed that a substitution bond between Cu and Ce was formed and a lot of Cu and Ce bonds were formed when the catalyst carrying 5 wt.%. Of Cu was calcined at 400 ℃. The Cu-Ce binding was confirmed by peak shifts in Raman analysis and also peaks appeared in H2-TPR. In addition, the balance state analysis demonstrated that a lot of surface labile oxygen molecules are formed, which can be more easily contributed to the reaction with Ce3+ species known to form a substitution bond easily. It was found that CO conversion rate of the catalyst used in this study was close to 100% at 150 ℃.
- Singhania A, Gupta SM, Beilstein J. Nanotechnol., 8, 1546 (2017)
- Li S, Zhu H, Qin Z, Wang G, Zhang Y, Wu Z, Li Z, Chen G, Dong W, Wu Z, Zheng L, Zhang J, Hu T, Wang J, Appl. Catal. B: Environ., 114, 498 (2014)
- Gracia FJ, Guerrero S, Wolf EE, Miller JT, Kropf A, J. Catal., 233(2), 372 (2005)
- Liu W, Sarofim AF, Flytzanistephanopoulos M, Chem. Eng. Sci., 49(24), 4871 (1994)
- Song YY, Du LY, Wang WW, Jia CJ, Langmuir, 35(26), 8658 (2019)
- Li Y, Cai Y, Xing X, Chen N, Deng D, Wang Y, Anal. Methods, 7, 3238 (2015)
- Mock SA, Sharp SE, Stoner TR, Radetic MJ, Zell ET, Wang RG, J. Colloid Interface Sci., 466, 261 (2016)
- Hossain ST, Almesned Y, Zhang K, Zell ET, Bernard DT, Balaz S, Wang R, Appl. Surf., 428, 598 (2018)
- Sun S, Mao D, Yu J, J. Rare Earths, 33, 1268 (2015)
- Dey S, Dhal GC, Mohan D, Prasad R, Gupta RN, Appl. Surf. Sci., 441, 303 (2018)
- Tan QQ, Shi ZS, Wu DF, Int. J. Energy Res., 43(10), 5392 (2019)
- Du L, Wang W, Yan H, Wang X, Jin Z, Song Q, Si R, Jia C, J. Rare Earths, 35, 1186 (2017)
- Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M, Appl. Catal. B: Environ., 230, 18 (2018)
- Qin L, Cui YQ, Deng TL, Wei FH, Zhang XF, Chem. Phys. Chem., 23, 1002 (2018)
- Hossain ST, Azeeva E, Zhang K, Zell ET, Bernard DT, Balaz S, Wang R, Appl. Surf., 455, 132 (2018)
- Popovic ZV, Dohcevic-Mitrovic Z, Cros A, Cantarero A, J. Phys. Condens. Matter, 19, 496209 (2007)
- Zhang F, Chan SW, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP, Appl. Phys. Lett., 80, 127 (2002)
- Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ, J. Catal., 246(1), 52 (2007)
- Elias JS, Stoerzinger KA, Hong WT, Risch M, Giordano L, Mansour AN, Shao-Horn Y, ACS Catal., 7, 6843 (2017)