화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.5, 620-626, October, 2019
일산화탄소 산화반응을 위한 Cu/CeO2 촉매의 반응특성
Reaction Characteristics of Cu/CeO2 Catalysts for CO Oxidation
E-mail:
초록
본 연구에서는 Cu/CeO2 촉매의 함량과 소성온도를 제어함으로써 촉매의 구조적 특성이 CO 산화반응에 미치는 영향과, 100~300 ℃의 온도범위에서 촉매의 CO 전환율을 평가하였다. 촉매의 구조적 특성이 변화함에 따라 촉매의 화학적 특성에 미친 영향을 확인하기 위해 XRD, Raman, BET, H2-TPR, XPS 분석을 수행하였다. 이때, Cu와 Ce의 치환 결합이 형성되는 것을 확인하였고, Cu를 5 wt.% 담지한 촉매를 400 ℃로 소성하였을 때 Cu와 Ce의 결합을 많이 이루고 있는 것으로 판단하였다. Cu와 Ce의 결합은 Raman 분석 상에서 peak의 이동과, H2-TPR에서 나타난 peak를 통해 확인하였다. 또한 산화상태 분석을 통하여 치환 결합을 쉽게 이룰 수 있다고 알려져 있는 Ce3+종과 반응에 더욱 쉽게 기인할 수 있는 표면 산소종(surface labile oxygen)이 많이 형성되어 있는 것을 확인하였다. 이때, 본 연구에서 사용한 촉매의 CO 전환율은 150 ℃에서 100%에 가까운 수치를 나타내는 것을 확인하였다.
In this study, the effects of the structural properties of the catalyst on CO oxidation reaction by controlling the Cu/CeO2 catalyst amount and calcination temperature were studied, and also the CO conversion rate of the catalyst at the temperature range of 100~300 ℃ was evaluated. XRD, Raman, BET, H2-TPR, and XPS analyses were performed to confirm the effect of changes in the structural properties on the chemical properties of the catalyst. The result confirmed that a substitution bond between Cu and Ce was formed and a lot of Cu and Ce bonds were formed when the catalyst carrying 5 wt.%. Of Cu was calcined at 400 ℃. The Cu-Ce binding was confirmed by peak shifts in Raman analysis and also peaks appeared in H2-TPR. In addition, the balance state analysis demonstrated that a lot of surface labile oxygen molecules are formed, which can be more easily contributed to the reaction with Ce3+ species known to form a substitution bond easily. It was found that CO conversion rate of the catalyst used in this study was close to 100% at 150 ℃.
  1. Singhania A, Gupta SM, Beilstein J. Nanotechnol., 8, 1546 (2017)
  2. Li S, Zhu H, Qin Z, Wang G, Zhang Y, Wu Z, Li Z, Chen G, Dong W, Wu Z, Zheng L, Zhang J, Hu T, Wang J, Appl. Catal. B: Environ., 114, 498 (2014)
  3. Gracia FJ, Guerrero S, Wolf EE, Miller JT, Kropf A, J. Catal., 233(2), 372 (2005)
  4. Liu W, Sarofim AF, Flytzanistephanopoulos M, Chem. Eng. Sci., 49(24), 4871 (1994)
  5. Song YY, Du LY, Wang WW, Jia CJ, Langmuir, 35(26), 8658 (2019)
  6. Li Y, Cai Y, Xing X, Chen N, Deng D, Wang Y, Anal. Methods, 7, 3238 (2015)
  7. Mock SA, Sharp SE, Stoner TR, Radetic MJ, Zell ET, Wang RG, J. Colloid Interface Sci., 466, 261 (2016)
  8. Hossain ST, Almesned Y, Zhang K, Zell ET, Bernard DT, Balaz S, Wang R, Appl. Surf., 428, 598 (2018)
  9. Sun S, Mao D, Yu J, J. Rare Earths, 33, 1268 (2015)
  10. Dey S, Dhal GC, Mohan D, Prasad R, Gupta RN, Appl. Surf. Sci., 441, 303 (2018)
  11. Tan QQ, Shi ZS, Wu DF, Int. J. Energy Res., 43(10), 5392 (2019)
  12. Du L, Wang W, Yan H, Wang X, Jin Z, Song Q, Si R, Jia C, J. Rare Earths, 35, 1186 (2017)
  13. Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M, Appl. Catal. B: Environ., 230, 18 (2018)
  14. Qin L, Cui YQ, Deng TL, Wei FH, Zhang XF, Chem. Phys. Chem., 23, 1002 (2018)
  15. Hossain ST, Azeeva E, Zhang K, Zell ET, Bernard DT, Balaz S, Wang R, Appl. Surf., 455, 132 (2018)
  16. Popovic ZV, Dohcevic-Mitrovic Z, Cros A, Cantarero A, J. Phys. Condens. Matter, 19, 496209 (2007)
  17. Zhang F, Chan SW, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP, Appl. Phys. Lett., 80, 127 (2002)
  18. Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ, J. Catal., 246(1), 52 (2007)
  19. Elias JS, Stoerzinger KA, Hong WT, Risch M, Giordano L, Mansour AN, Shao-Horn Y, ACS Catal., 7, 6843 (2017)