화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.5, 615-619, October, 2019
통계학적 실험계획법 해석을 통한 MOF-235 합성 최적화
Optimization of MOF-235 Synthesis by Analysis of Statistical Design of Experiment
E-mail:
초록
통계학적 실험계획법을 이용하여 다공성 구조체인 MOF-235 합성 공정 최적화를 수행하였다. 합성에 사용되는 주성분인 terephthalic acid (TPA), Iron (III) chloride hexahydrate, N,N-dimethylformamide (DMF) 및 ethanol의 농도가 MOF-235의 결정구조를 형성하는데 중요한 요소가 되었다. 다양한 농도의 4가지 성분을 이용하여 MOF-235를 합성한 후 XRD를 이용하여 결정도를 측정하였다. 16가지 실험조건을 통해 합성한 MOF-235의 결정도 결과를 통계학적 해석을 통해 주성분의 조성이 입자의 합성에 미치는 영향을 분석하였다. F 검정법을 이용한 분산분석에서 에탄올의 농도가 입자의 결정도에 가장 큰 영향을 미치고 TPA가 가장 영향력이 작은 것으로 분석되었다. 결정도를 예측할 수 있는 회귀모델을 도출하였고 2가지 합성변수에 대한 예측결과를 등고선도를 이용하여 제시하였다. 마지막으로 혼합물법을 이용하여 3가지 합성인자가 미치는 결정도를 예측하여 제시하였다.
Statistical design of experiments was performed to optimize MOF-235 synthesis process. Concentrations of terephthalic acid (TPA), iron (III) chloride hexahydrate, N,N-dimethylformamide (DMF) and ethanol were important factors to develop the crystal structure of MOF-235. MOF-235 was synthesized with various concentrations of the listed chemicals above and the crystallinity was measured by XRD. The effect of the composition on the synthesis of MOF-235 was evaluated using a statistical analysis. For the variance analysis using F-test, the concentration of ethanol showed the greatest effect on the crystallinity and TPA the least influential. A regression model for predicting the crystallinity of MOF-235 was derived and the prediction results for two synthetic variables were presented using contour plots. Finally, the crystallinity was predicted by a mixture method with FeCl3, ethanol and DMF.
  1. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J, Nature, 423, 705 (2003)
  2. Stock N, Biswas S, Chem. Rev., 1122, 933 (2012)
  3. Wang Z, Cohen SM, Chem. Soc. Rev., 38, 1315 (2009)
  4. Song YF, Cronin L, Angew. Chem.-Int. Edit., 47, 4635 (2008)
  5. Li X, Zhang J, Li W, J. Ind. Eng. Chem., 44, 146 (2016)
  6. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F, Chem. Soc. Rev., 44, 6804 (2015)
  7. Kim J, Kim SN, Jang HG, Seo G, Ahn WS, Appl. Catal. A: Gen., 453, 175 (2013)
  8. Anbia M, Sheykhi S, J. Ind. Eng. Chem., 19(5), 1583 (2013)
  9. Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen AH, Maurin G, Eddaoudi M, Chem. Soc. Rev., 46, 3402 (2017)
  10. Lee YR, Cho SM, Ahn SW, Korean J. Chem. Eng., 35(7), 1542 (2018)
  11. Jiang N, Deng Z, Liu S, Tang C, Wang G, Korean J. Chem. Eng., 33(9), 2747 (2016)
  12. Sudik AC, Cote AP, Yaghi OM, Inorg. Chem., 44(9), 2998 (2005)
  13. Anbia M, Hoseini V, Sheykhi S, J. Ind. Eng. Chem., 18(3), 1149 (2012)
  14. Haque E, Jun JW, Jhung SH, J. Hazard. Mater., 185, 507 (2011)
  15. Tran NT, Kim D, Yoo KS, Kim J, Bull. Korean Chem. Soc., 40, 112 (2019)
  16. Tao X, Sun C, Han Y, Huang L, Xu D, Cryst. Eng. Comm., 21, 2541 (2019)
  17. Walpole RE, Ye KE, Raymond, Myers H, Myers SL, Probability and Statistics for Engineers and Scientists, 9th ed., 639-652, Prentice Hall, Boston, USA (2012).
  18. Mason RL, Gunst RF, Hess JL, Statistical Design and Analysis of Experiments, with Applications to Engineering and Science, 2nd ed., 568-597, Wiley-Interscience, New Jersey, USA (2003).