화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 161-166, January, 2020
Aggregate removal of particulate matter by selective protein-rich fraction of Moringa oleifera extract
E-mail:
Particulate matter (PM) is microsized dust that occurs naturally and industrially; PM has harmful effects on humans and the environment by binding with heavy metal ions. This study showed that selective protein-rich Moringa oleifera seed extract (hereafter “Puri-Tox”) is an excellent aggregation inducer for the removal of PM. SEM, SDS-PAGE, protein quantitation and MS/MS sequencing were performed to characterize and analyze the Puri-Tox and PM aggregation efficacy. Puri-Tox (>25%) gradually aggregated PM in aqueous solution, with superior performance at pH 5-7 and below 60 °C. Peptide sequence analysis revealed that short negatively charged and sulfur-rich peptides constructed a funnel-like structure, and these proteins seemed to act as enzymes to neutralize the charge of PM to induce mutual aggregation. These results can be used to develop products for the removal of PM from the human body surface or aqueous industrial waste.
  1. Schulze T, et al., Environ. Sci. Pollut. Res. Int., 22(19), 14606 (2015)
  2. Lee RE, Science, 178(4061), 567 (1972)
  3. Yang F, et al., Environ. Sci. Technol., 48(1), 63 (2014)
  4. Zhang T, et al., PLoS One, 12(6), e01798 (2017)
  5. Demirak A, et al., Environ. Monit. Assess., 184(12), 7113 (2012)
  6. Balluz L, et al., Public Health Rep., 122(5), 626 (2007)
  7. Bowe B, et al., Lancet Planet Health, 1(7), e267 (2017)
  8. Cai J, et al., Int. J. Environ. Res. Public Health, 15(9) (2018)
  9. Huls A, Schikowski T, Thorax, 72(9), 771 (2017)
  10. Hyun YJ, et al., Mar. Drugs, 17 (2019)
  11. Soeur J, et al., J. Dermatol. Sci., 86(2), 162 (2017)
  12. Piao MJ, et al., Arch. Toxicol., 92(6), 2077 (2018)
  13. Cheng Y, et al., ACS Catal., 7(6), 3883 (2017)
  14. Nichols CE, et al., Am. J. Physiol. Heart Circ. Physiol., 309(12), H2017 (2015)
  15. Ryu J, et al., Environ. Pollut., 245, 253 (2019)
  16. Li X, et al., ACS Appl. Mater. Interfaces, 10(49), 42891 (2018)
  17. Schaubroeck T, et al., Environ. Sci. Technol., 51(11), 6610 (2017)
  18. Kim JH, et al., Sci. World J., 2012, 532354 (2012)
  19. Upadhyay N, et al., Anal. Bioanal. Chem., 394(1), 255 (2009)
  20. Anwar F, et al., Phytother. Res., 21(1), 17 (2007)
  21. Imran M, et al., Int. J. Phytoremed., 1 (2019).
  22. Ghebremichael KA, et al., Water Res., 39(11), 2338 (2005)
  23. Nordmark BA, Bechtel TM, Riley JK, Velegol I, Velegol SB, Przybycien TM, Tilton RD, Langmuir, 34(16), 4852 (2018)
  24. Santos AF, et al., Environ. Technol., 37(6), 744 (2016)
  25. Banik S, Biswas S, Karmakar S, F1000Research, 7, 1151 (2018).
  26. Hultmark D, et al., Embo J., 2(4), 571 (1983)
  27. Bradford HF, Richards CD, Brain Res., 105(1), 168 (1976)
  28. Deering K, et al., Environ. Monit. Assess., 191(6), 375 (2019)
  29. Desboeufs KV, et al., Chemosphere, 58(2), 195 (2005)
  30. Gonzalez-Castanedo Y, et al., Chemosphere, 119, 1296 (2015)
  31. Veronesi B, et al., Toxicol. Appl. Pharmacol., 178(3), 144 (2002)
  32. Fang T, et al., Environ. Sci. Technol., 51(5), 2611 (2017)
  33. Santhosh C, et al., Sci. Rep., 7(1), 14107 (2017)
  34. Ngah WSW, Hanafiah MAKM, Bioresour. Technol., 99(10), 3935 (2008)
  35. Walz D, Caplan SR, Cell Biophys., 12, 13 (1988)
  36. Bashir H, et al., AoB Plants, 7 (2015)
  37. Khan MI, et al., J. Plant Physiol., 173, 9 (2015)
  38. Baumann C, et al., Angew. Chem.-Int. Edit., 56(16), 4617 (2017)
  39. Dong Q, Schlueter SD, Brendel V, Nucleic Acids Res, 32, D354 (2004)