Journal of Industrial and Engineering Chemistry, Vol.81, 167-177, January, 2020
Development and optimization of solvothermal liquefaction of marine macroalgae Saccharina japonica biomass for biopolyol and biopolyurethane production
E-mail:
Due to its abundance, macroalgae Saccharina japonica, which is a third-generation biomass, was liquefied to produce biopolyol using a crude glycerol and polyethylene glycol 300 (PEG300) solvent mixture in the presence of sulfuric acid as a catalyst. The reaction parameters, including catalyst loading, reaction time, and reaction temperature, were optimized to obtain high biomass conversion by applying response surface methodology (RSM). The optimal conditions for Saccharina japonica solvothermal liquefaction were determined at 4.25% catalyst loading, a reaction time of 65 min, and a reaction temperature of 160 °C, with a corresponding biomass conversion of 82.63%. Finally, biopolyurethane foam with a closed cell structure and polyhedral cell shapes with a similar cell wall thickness was successfully produced, and its temperature at 5% and 10% weight loss were 268 °C (Td5) and 300 °C (Td10), respectively, comparable to neat polyurethane. We clearly demonstrated that marine biomass could be used for production of
biopolyols and biopolyurethane.
Keywords:Macroalgae;Saccharina japonica;Solvothermal liquefaction;Optimization;Response surface methodology;Biopolyurethane
- McKendry P, Bioresour. Technol., 83(1), 37 (2002)
- Chen YJ, J. Chem. Pharm. Res., 6, 226 (2014)
- Isikgor FH, Becer CR, Polym. Chem., 6, 4497 (2015)
- Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S, Front. Bioeng. Biotech., 2, 90 (2015)
- Rowbotham JS, Dyer PW, Greenwell HC, Theodorou MK, Biofuels, 3, 441 (2012)
- Cao LC, Yu IKM, Cho DW, Wang D, Tsang DCW, Zhang SC, Ding SM, Wang LL, Ok YS, Bioresour. Technol., 273, 251 (2019)
- Ghosh S, Gnaim R, Greiserman S, Fadeev L, Gozin M, Golberg A, Bioresour. Technol., 271, 166 (2019)
- Jiang R, Ingle KN, Golberg A, Algal Res., 14, 48 (2016)
- Fernand F, Israel A, Skjermo J, Wichard T, Timmermans KR, Golberg A, Renew. Sust. Energ. Rev., 75, 35 (2017)
- Saravana PS, Cho YJ, Park YB, Woo HC, Chun BS, Carbohydr. Polym., 153, 518 (2016)
- Saravana PS, Choi JH, Park YB, Woo HC, Chun BS, Algal Res., 13, 246 (2016)
- Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494 (2008)
- Kosmela P, Kazimierski P, Formela K, Haponiuk J, Piszczyk L, J. Ind. Eng. Chem., 56, 399 (2017)
- Palz W, van Swaaij WP, Kersten SR, Biomass Power for the World,1st ed., Pan Stanford, Singapore, 2015.
- Hu SJ, Wan CX, Li YB, Bioresour. Technol., 103(1), 227 (2012)
- Lee Y, Lee EY, J. Wood Chem. Technol., 36, 353 (2016)
- Szycher M, Szycher’s Handbook of Polyurethanes, 2nd ed., CRC press, Florida, 2012.
- Saito T, Perkins JH, Jackson DC, Trammel NE, Hunt MA, Naskar AK, RSC Adv., 3, 21832 (2013)
- Hu SJ, Li YB, Bioresour. Technol., 161, 410 (2014)
- Wang ZW, Liu XL, Bioresour. Technol., 99(17), 8245 (2008)
- Sidik DAB, Ngadi N, Amin NAS, Bioresour. Technol., 135, 690 (2013)
- Barbanera M, Pelosi C, Taddeid AR, Cotana F, Energy Conv. Manag., 171, 1263 (2018)
- Kim KH, Yu JH, Lee EY, J. Ind. Eng. Chem., 38, 175 (2016)
- Lee Y, Lee EY, Wood Sci. Technol., 52, 581 (2018)
- Daneshvar E, Vazirzadeh A, Niazi A, Sillanpaa M, Bhatnagar A, Chem. Eng. J., 307, 435 (2017)
- Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Lee KX, Nanoscale Res. Lett., 11, 276 (2016)
- Jin BB, Duan PG, Xu YP, Wang F, Fan YC, Bioresour. Technol., 149, 103 (2013)
- Jung JY, Yu J, Lee EY, J. Polym. Environ., 26, 3493 (2018)
- Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512 (2011)
- Zheng Z, Wang L, Li D, Huang Z, Adhikari B, Chen XD, J. Food Eng., 12, 911 (2016)
- Hawkins MC, O’Toole B, Jackovich D, J. Cell. Plast., 41, 267 (2005)