화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.6, 673-680, December, 2019
GAP 및 GAP-co-BO Copolymer계 에너지 함유 열가소성 폴리우레탄의 합성 및 특성
Synthesis and Characterization of GAP or GAP-co-BO Copolymer-based Energetic Thermoplastic Polyurethane
E-mail:
초록
GAP 및 GAP-co-BO계 에너지 함유 열가소성 탄성체(ETPE)의 하드세그먼트 함량을 30~45% 범위에서 변화시켜 합성하여 열적 특성 및 기계적 특성을 비교 연구하여 고찰하였다. FTIR 분석 결과로부터 GAP-co-BO계 ETPE와 GAP계 ETPE는 하드세그먼트 함량이 증가함에 따라 수소결합을 형성하는 능력이 증가하였으며 GAP-co-BO계 ETPE의 수소결합 능력이 GAP계 ETPE보다 크게 나타났다. DSC와 DMA 분석 결과로부터 GAP계 ETPE의 유리전이온도(Tg)는 하드세그먼트 함량이 증가함에 따라 증가하였으나, GAP-co-BO계 ETPE의 유리전이온도(Tg)는 하드세그먼트가 증가하여도 유사한 값을 유지하였다. 상온 storage modulus는 GAP-co-BO계 ETPE의 값이 GAP계 ETPE 값보다 더 크게 나타났다. 이러한 거동은 GAP-co-BO계 ETPE 내의 하드세그먼트와 소프트세그먼트의 강한 상분리 거동의 결과로 볼 수 있다. 그 결과 GAP-co-BO계 ETPE는 GAP계 ETPE보다 더 큰 파단강도와 더 낮은 파단신율 값을 나타냈다.
GAP or GAP-co-BO based energetic thermoplastic elastomers (ETPEs) were synthesized by changing the hard segment content percent in the range of 30~45% by 5% difference. Thermal and mechanical properties of GAP-co-BO based ETPEs were compared to those of GAP based ETPEs. FT-IR results showed that the capability of forming hydrogen bond increases with increasing the hard segment content in GAP/GAP-co-BO based ETPE, and also the GAP-co-BO based ETPEs are stronger than GAP based ETPEs in the hydrogen bond formation. DSC and DMA results showed that the glass transition temperature (Tg) of GAP based ETPEs increased with the increment of the hard segment content, while the Tg of GAP-co-BO based ETPEs was maintained even the hard segment content increased. The storage modulus at room temperature of the GAP-co-BO based ETPEs was higher than that of the GAP based ETPEs. This was due to the strong phase separation behavior of the hard and soft segment of GAP-co-BO based ETPEs, which further resulted in the stronger breaking strength and lower tensile elongation at break point for GAP-co-BO based ETPE than the GAP based one.
  1. Mohan YM, Mani Y, Raju KM, Des. Monomers, 9, 201 (2006)
  2. Tang CJ, Lee YJ, Litzinger TA, Combust. Flame, 117(1-2), 244 (1999)
  3. Kubota N, Sonobe T, Propellants, Explosives, Pyrotechnics, 13, 172-177 (1988).
  4. Judge M, Badeen C, Jones D, Propellants, Explosives, Pyrotechnics, 32, 227-234 (2007).
  5. Frankel MB, Grant LR, Flanagen JE, J. Propulsion Power., 8, 560 (1992)
  6. Shi MD, Chinese Journal of Explosives and Propellants, 1, 9-16 (1994).
  7. Guery JF, Chang IS, Shimada T, Glick M, Boury D, Robert E, Napior J, Wardle R, Perut C, Calabro M, Glick R, Habu H, Sekino N, Vigier G, d’Andrea B, Acta Astronaut., 66, 201 (2010)
  8. Sanghavi RR, Asthana SN, Karir JS, J. Energy Mater., 19, 79 (2001)
  9. Diaz E, Ampleman G, Prud’homme RE, Propellants, Explosives, Pyrotechnics, 28(4), 210-215 (2013).
  10. Ampleman G, Brousseau P, Thiboustot S, Dubois C, Diaz E, Insensitive melt- cast plastic- bonded explosives containing energetic polyurethane thermoplastic elastomer binders, US 2002/0003016 A1 (2002).
  11. Ampleman G, Marois A, Desilets S, Azido thermoplastic elastomers for propellants, US Patent 6,479,614 (2002).
  12. Ahad E, Azido thermoplastic elastomers, US Patent 5,223,056(1993).
  13. Hepburn C, Polyurethane Elastomers, 2nd ed., Elsevier Applied Science, London (1992).
  14. Oertel G, Polyurethane Handbook, 2nd ed., Hanser, Munich (1994).
  15. Fakirov S, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2005).
  16. Holden G, Legge NR, Quirk R, Schroeder HE, Thermoplastic Elastomers, 2nd ed., Hanser Gargner Publication (1996).
  17. Hepburn C, Polyurethane Elastomers, Elsevier Science, New York (1992).
  18. (a) Li Y, et al., Macromolecules, 25, 7365-7372 (1992); (b)Abouzahr S, Wilkes GL, J. Appl. Polym. Sci., 29, 2695-2711 (1984); (c) Wilkes CE, Yusek CS, J. Macromol. Sci. B, 7, 157-175 (1973); (d) Bonart R, Muller EH, J. Macromol. Sci. B, 10, 177-189 (1974); (e)Hesketh TR, et al., Polym. Eng. Sci., 20, 190-197 (1980); (f) Vilensky VA, Lipatov YS, Polymer, 35, 3069-3074 (1994); (g) Koberstein JT, Russell TP, Macromolecules, 19, 714-720 (1986); (h) Paik Sung CS, et al., Macromolecules, 13, 111-116 (1980); (i) Seymour RW, Cooper SL, J. Polym. Sci. B, 9, 689-694 (1971); (j) You JS, et al., Macromol. Res., 18(12), 1226-1232 (2010); (k) Liu P, et al., Polym. Bull., 66(4), 503-515 (2011).
  19. You JS, Kweon JO, Kang SC, Noh ST, Macromol. Res., 18(12), 1226 (2010)
  20. Liu PF, Ye L, Liu YG, Nie FD, Polym. Bull., 66(4), 503 (2011)
  21. Kusy RP, Turner DT, Macromolecules, 4(3), 337 (1971)
  22. Luo N, Wang DN, Ying SK, Polymer, 37(16), 3577 (1996)
  23. Zhang CX, Ren ZY, Yin ZG, Qian HY, Ma DZ, Polym. Bull., 60(1), 97 (2008)
  24. Mattia J, Painter P, Macromolecules, 40(5), 1546 (2007)
  25. Tien YI, Wei KH, Polymer, 42(7), 3213 (2001)
  26. Koberstein JT, Galambos AF, Leung LM, Macromolecules, 25, 6195 (1992)
  27. Webster D, Advances in Urethane Science and Technology, 110-136 Technomic, Lancaster (1992).
  28. Holden G, Legge HR, Quirk R, Schroeder HE, Thermoplastic Elastomers, Hanser/Gardner Publications, Inc., Cincinnati (1996).
  29. Fakirov S, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2005).
  30. Xiao H, Xiao HX, Frisch KC, Malwitz N, J. Appl. Polym. Sci., 54(11), 1643 (1994)