화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.6, 707-711, December, 2019
Catalytic Pyrolysis of Waste Polyethylene Terephthalate over Waste Concrete
E-mail:
The feasibility of waste concrete as a catalyst for the effective pyrolysis of polyethylene terephthalate (PET) was examined using thermogravimetric (TG) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS) analyses. TG analysis results indicated that the maximum decomposition temperature of PET is not altered by the use of waste concrete, showing similar values (407 ℃ and 408 ℃ at 5 ℃/min). Meanwhile, the volatile product distribution data obtained from the Py-GC/MS analysis revealed that the use of waste concrete promoted the deoxygenation reaction via converting the oxygen containing products such as benzoic acids, benzoates, and terephthalates to valuable deoxygenated aromatic hydrocarbons including benzene, toluene, ethylbenzene, and styrene. This suggests that the waste concrete can be used as a potential catalyst for the production of valuable aromatic hydrocarbons from PET pyrolysis.
  1. Mandal S, Dey A, Chapter 1. PET chemistry, Recycling of Polyethylene Terephthalate Bottles, 1-22, William Andrew Publishing (2019).
  2. Leng Z, Padhan RK, Sreeram A, J. Clean Prod., 180, 682 (2018)
  3. Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK, Energy Conv. Manag., 115, 308 (2016)
  4. Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M, Renew. Sust. Energ. Rev., 82, 576 (2018)
  5. Malik N, Kumar P, Shrivastava S, Ghosh SB, Int. J. Plast. Technol., 21, 1 (2017)
  6. Fukushima M, Wu B, Ibe H, Wakai K, Sugiyama E, Abe H, Kitogawa K, Tsuruge S, Shimura K, Ono E, J. Mater. Cycles Waste Manag., 12, 108 (2010)
  7. Kumagai S, Yamasaki R, Kameda T, Saito Y, Watanabe A, Watanabe C, Teramae N, Yoshioka T, React. Chem. Eng., 2, 776 (2017)
  8. Du S, Valla JA, Parnas RS, Bollas GM, ACS Sustain. Chem. Eng., 4, 2852 (2016)
  9. Diaz-Silvarrey LS, McMahon A, Phan AN, J. Anal. Appl. Pyrolysis, 134, 621 (2018)
  10. Park YK, Jung J, Ryu S, Lee HW, Siddiqui MZ, Jae J, Watanabe A, Kim YM, Appl. Energy, 250, 1706 (2019)
  11. Tsuge S, Ohtani H, Watanabe C, Pyrolysis-GC/MS Data Book of Synthetic Polymers, 1st ed., Elsevier, Oxford, UK (2011).
  12. Shin DI, Jeong SM, Kim YM, Lee HW, Park YK, Appl. Chem. Eng., 29(2), 248 (2018)
  13. Ramos FJHTV, Mendes LC, Cestari SP, J. Therm. Anal. Calorim., 119, 1895 (2015)
  14. Pereira APS, Silva MHP, Junior EPL, Paula AS, Tommasini FJ, Mater. Res., 20, 411 (2017)
  15. Fukushima M, Shioya M, Wakai H, Ibe H, J. Mater. Cycles Waste Manag., 11, 11 (2009)
  16. Ozsin G, Putun AE, J. Clean Prod., 205, 1127 (2018)
  17. Xu Q, Meng T, Huang M, Appl. Mech. Mater., 121-126, 126 (2011)