Applied Chemistry for Engineering, Vol.30, No.6, 712-718, December, 2019
오일 스크러버 및 집진장치를 통한 바이오매스 가스화 공정 발생 타르 및 입자 제거 연구
Simultaneous Treatment of Tar and Particles Using Oil Scrubber and Bag Filter in Biomass Gasification
E-mail:
초록
가스화(gasification)는 바이오매스로부터 에너지를 얻을 수 있는 방법 중 하나로 열화학적 변환을 통해 수소, 일산화탄소, 메탄 등으로 조성된 가연성 가스인 ‘producer gas’를 생산할 수 있다. 하지만 producer gas와 함께 타르(tar)를 비롯한 ash 등의 입자상 물질이 함께 생성돼, 발전 터빈이나 연소 엔진 등에 유입되어 고장을 일으키거나 배관 등에 축적되어 막힘 현상 등을 야기하므로 제거가 필요하다. 본 연구에서는 producer gas 중 타르 및 입자 제거를 위해 오일 스크러버(oil scrubber)와 집진장치를 도입하였다. 흡수용매로써 타르를 효과적으로 제거가 가능한 대두유를 사용하였고, 스크러버의 용매 온도에 따라 제거효율이 어떻게 변화하는지 실험을 통해 관찰하였다. 집진장치에는 타르로 인한 필터 눈 막힘 현상 등의 문제를 방지하기 위해 pre-coating 기술을 도입하였다. Pre-coating에 사용할 물질로써 분말 소석회와 목탄계 활성탄(wood char)을 사용하였으며, 타르(tar)를 비롯한 입자 평균 제거 효율은 소석회를 pre-coating 물질로 사용 시 86%, 활성탄의 경우 80%로 나타났다. 스크러버와 집진장치를 동시에 사용한 경우에는 평균 제거효율이 소석회는 88%, 활성탄의 경우 83%로 나타났다.
A combustible producer gas composed of H2, CO and CH4 could be obtained by the thermal-chemical conversion of biomass.However, a large amount of particulate matters including tar generated causes the mal-function of turbines and engines or the fouling of pipelines. In this study, a wet scrubber using the soybean oil and bag filter were installed, and the removal efficiency was investigated. Hydrate limestone and wood char base activated carbon were pre-coated on the filter medium to prevent clogging of open pores. The removal efficiencies by the bag filter were 86 and 80% for the hydrated limestone and activated carbon coating, respectively. Overall, the collection when using a series of oil scrubbers and bag filters were 88%, while 83% for the filter coating material.
- Pachauri RK, Meyer L, Climate Change 2014 Synthesis Report, 2-16, IPCC, Geneva, Switzerland (2015).
- Santos G, Transp. Policy, 59, 71 (2017)
- Owusu PA, Asumadu-Sarkodie S, Cogent Eng., 3, 1 (2016)
- McKendry P, Bioresour. Technol., 83(1), 37 (2002)
- Han J, Kim H, Renew. Sust. Energ. Rev., 12, 397 (2008)
- Dudynski M, van Dyk JC, Kwiatkowski K, Sosnowska M, Fuel Process. Technol., 131, 203 (2015)
- Abu El-Rub Z, Bramer EA, Brem G, Ind. Eng. Chem. Res., 43(22), 6911 (2004)
- Torres W, Pansare SS, Goodwin JG, Catal. Rev., 49, 407 (2007)
- Shrivastav P, Karmakar MK, Chandra P, Chatterjee PK, J. Environ. Chem. Eng., 3, 689 (2015)
- Kaisalo NK, Koskinen-Soivi ML, Simell PA, Lehtonen J, Fuel, 153, 118 (2015)
- Anisa S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355 (2011)
- Tarnpradab T, Unyaphan S, Takahashi F, Yoshikawa K, Energy Fuels, 31(2), 1564 (2017)
- Tuomi S, Kurkela E, Simell P, Reinikainen M, Fuel, 139, 220 (2015)
- Ma L, Verelst H, Baron GV, Catal. Today, 105(3-4), 729 (2005)
- Choi HJ, Preparation and Characterization of Ceramic Filter Media, Ph.D dissertation, Korea University, Seoul, Korea (2015).
- Hasler P, Nussbaumer T, Biomass Bioenergy, 16, 385 (1999)
- Schmidt E, Pilz T, Filtration Seperation, 33(5), 409 (1996)
- Ravert E, Precoating new filters for better airflow, longer filter life, Powder Bulk Engineering, 1-5, CSC Publishing, USA (2006).
- Schiller S, Schmid HJ, Chem. Eng. Technol., 37(6), 1009 (2014)
- Paethanom A, Nakahara S, Kobayashi M, Prawisudha P, Yoshikawa K, Fuel Process. Technol., 104, 144 (2012)
- Puig-Arnavat M, Bruno JC, Coronas A, Renew. Sust. Energ. Rev., 14, 2841 (2010)
- Shaul S, Rabinovich E, Kalman H, Particulate Sci. Technol., 32, 197 (2014)
- Kim JH, Jo YM, Kim JS, Kim SB, J. Korea Acad. Ind. Coop. Soc., 19, 552 (2018)
- Osipovs S, Fuel, 103, 387 (2013)
- Hajar S, Rashid M, Nurnadia A, Ammar MR, Perintis, E-Journal, 5, 22-33 (2015).
- Schiller S, Hellmich C, Schmid HJ, Chem. Eng. Technol., 39(3), 491 (2016)
- Boudhan R, Joubert A, Gueraoui K, Durecu S, Venditti D, Tran DT, Le Coq L, Waste Biomass Valorization, 9, 731 (2018)
- Ahmad NA, Zainal ZA, J. Nat. Gas Sci. Eng., 32, 256 (2016)
- Ozturk B, Yilmaz D, Process Saf. Environ. Protect., 84(B5), 391 (2006)
- Zhang J, Pan W, Long Z, Wang C, Feng Z, Aerosol Air Qual. Res., 17, 1063 (2017)
- Gac JM, Jackiewicz A, Werner L, Jakubiak S, Sep. Purif. Technol., 170, 234 (2016)