Journal of Industrial and Engineering Chemistry, Vol.82, 234-242, February, 2020
Influence of PEG chain length on colloidal stability of mPEGylated polycation based coacersomes for therapeutic protein delivery
E-mail:
The polycation/polyanion based coacervate platform for therapeutic protein delivery
finds difficulty in their colloidal stability under physiological environment. To overcome this issue, PEGylation could be a versatile strategy to enhance colloidal stability. Herein, a poly(ethylene arginyl aspartate diglyceride) (PEAD) polycation was synthesized, and a series of methoxy polyethylene glycols (mPEG) including mPEG350, mPEG750 and mPEG2000 were attached with PEAD polycation to obtain mPEG350-PEAD, mPEG750-PEAD and mPEG2000-PEAD respectively. The PEAD and mPEGylated PEADs were complexed with heparin (HEP) to fabricate coacervate (Coa) and coacersome (mP_Coa) particles respectively. The colloidal stability of Coa and mP_Coa coacersomes has been investigated by dynamic light scattering (DLS) and microscopic techniques. The vascular endothelial growth factor 165 (VEGF-165) was encapsulated in the Coa or mP_Coa particles and administered to human umbilical vein endothelial cells (HUVECs) to induce a tubular network formation in vitro. All the polycations are highly biocompatible and exhibit more than 94 % of VEGF-165 loading efficiency. An effect of mPEG chain length on colloidal stability of mP_Coa and in vitro tubular formation ability of HUVECs has been investigated.
- Shammas NW, Vasc. Health Risk Manage., 3, 229 (2007)
- Kim HJ, Jang SY, Park JI, Byun J, Kim DI, Do YS, Kim JM, Kim S, Kim BM, Kim WB, Kim DK, Exp. Mol. Med., 36, 336 (2004)
- Peravali R, Gunnels L, Dhanabalan K, Ariganjoye F, Gerling IC, Dokun AO, J. Clin. Transl. Endocrinol., 17, 100199 (2019)
- Shishehbor MH, White CJ, Gray BH, Menard MT, Lookstein R, Rosenfield K, Jaff MR, J. Am. Coll. Cardiol., 68, 2002 (2016)
- Kinlay S, Circ. Cardiovasc. Interventions, 9, e00194 (2016)
- Subbiah R, Guldberg RE, Adv. Healthc. Mater., 8, e18010 (2019)
- Kim S, Kim J, Gajendiran M, Yoon M, Hwang MP, Wang YD, Kang BJ, Kim K, Biomacromolecules, 19(11), 4239 (2018)
- Kim S, Lee S, Kim K, Adv. Exp. Med. Biol., 1078, 233 (2018)
- Park J, Kim S, Kim K, J. Pharm. Invest., 48, 187 (2018)
- Gajendiran M, Rhee JS, Kim K, Tissue Eng. B, 24, 66 (2017)
- Eskens FA, Verweij J, Eur. J. Cancer, 42, 3127 (2006)
- Poon S, Lu X, Smith RAA, Ho P, Bhakoo K, Nurcombe V, Cool SM, Angiogenesis, 21, 777 (2018)
- Zhang ZD, Xu YQ, Chen F, Luo JF, Liu CD, Heart Vessels, 34, 167 (2019)
- Cross LM, Carrow JK, Ding X, Singh KA, Gaharwar AK, ACS Appl. Mater. Interfaces, 11, 6741 (2019)
- Schultz C, Br. J. Pharmacol., 176, 26 (2019)
- Lamprecht A, Nat. Rev. Gastroenterol. Hepatol., 12, 195 (2015)
- Wang Z, Long D, Huang Y, Khor S, Li X, Jian X, Wang Y, ACS Biomater. Sci. Eng., 3, 1988 (2017)
- Park J, Lee MS, Jeon J, Lee S, Hwang MP, Wang Y, Yang HS, Kim K, Acta Biomater., 90, 179 (2019)
- Lee MS, Ahmad T, Lee J, Awada HK, Wang Y, Kim K, Shin H, Yang HS, Biomaterials, 124, 65 (2017)
- Chu H, Johnson NR, Mason NS, Wang Y, J. Control. Release, 150, 157 (2011)
- Mansurov N, Chen WCW, Awada H, Huard J, Wang Y, Saparov A, J. Tissue Eng. Regen. Med., 12, e1164 (2018)
- Hwang MP, Ding X, Gao J, Acharya AP, Little SR, Wang Y, Soft Matter., 14, 387 (2018)
- Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, De Grossi S, Riccioli A, Amenitsch H, Lagana A, Nanoscale, 6, 2782 (2014)
- Gajendiran M, Balashanmugam P, Kalaichelvan PT, Balasubramanian S, Mater. Res. Exp., 3, 065401 (2016)
- Wu J, Zhao C, Lin W, Hu R, Wang Q, Chen H, Li L, Chen S, Zheng J, J. Mater. Chem. B, 2, 2983 (2014)
- Reena K, Prabakaran M, Leeba B, Gajendiran M, Arul Antony S, J. Nanosci. Nanotechnol., 17, 4549 (2017)
- Reena K, Balashanmugam P, Gajendiran M, Arul Antony S, J. Nanosci. Nanotechnol., 16, 4762 (2016)
- Reena K, Gajendiran M, Prabakaran M, Antony SA, Kim K, J. Ind. Eng. Chem., 51, 113 (2017)
- Mani G, Kyobum K, Sengottuvelan B, Sci. Rep., 7, 16418 (2017)
- Veronese FM, Pasut G, Drug Discov. Today, 10, 1451 (2005)
- Thi Nguyen NT, Yun S, Lim DW, Lee EK, Prep. Biochem. Biotechnol., 48, 522 (2018)
- Jo H, Gajendiran M, Kim K, Macromal. Biosci., (2019).
- Nowick JS, Khakshoor O, Hashemzadeh M, Brower JO, Org. Lett., 5, 3511 (2003)
- Merkel OM, Germershaus O, Wada CK, Tarcha PJ, Merdan T, Kissel T, Bioconjugate Chem., 20, 1270 (2009)
- Vader P, van der Aa LJ, Engbersen JF, Storm G, Schiffelers RM, Pharm. Res., 29, 352 (2012)
- Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, Fischer D, Davies MC, Kissel T, Bioconjugate Chem., 13, 845 (2002)
- Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, Liang X, Wang W, Luo S, et al,, Cell Res., 25, 237 (2015)
- Chen X, Yuan Z, Yi X, Zhuo R, Li F, Nanotechnology, 23, 415602 (2012)
- Jiang S, Li Y, Lin T, Yuan L, Li Y, Wu S, Xia L, Shen H, Lu J, Cell Physiol. Biochem., 40, 1105 (2016)
- Kleinheinz J, Jung S, Wermker K, Fischer C, Joos U, Head Face Med., 6, 17 (2010)
- Simon-Yarza T, Formiga FR, Tamayo E, Pelacho B, Prosper F, Blanco-Prieto MJ, Theranostics, 2, 541 (2012)
- Johnson NR, Ambe T, Wang Y, Acta Biomater., 10, 40 (2014)
- Kalaji N, Deloge A, Sheibat-Othman N, Boyron O, About I, Fessi H, J. Biomedical Nanotechnol., 6, 106 (2010)
- Swain SK, Sarkar D, Appl. Surf. Sci., 286, 99 (2013)
- Zweers ML, Engbers GH, Grijpma DW, Feijen J, J. Control. Release, 114, 317 (2006)
- Kim SJ, Lee JK, Hwang MP, Wang YD, Kim KB, J. Ind. Eng. Chem., 79, 236 (2019)
- Ding X, Miller PG, Hwang MP, Fu J, Wang Y, Eur. Polym. J., 117, 353 (2019)