- Previous Article
- Next Article
- Table of Contents
Applied Chemistry for Engineering, Vol.31, No.1, 1-6, February, 2020
바이오가스 유래 수소 제조 기술 동향 및 효과적인 적용
Recent Progress for Hydrogen Production from Biogas and Its Effective Applications
E-mail:
초록
바이오가스를 이용한 수소 제조는 주요한 에너지 및 환경 관련 이슈들을 동시에 해결할 수 있다는 장점으로 꾸준히 주목받아 왔다. 바이오가스 정제를 통해 얻은 바이오메탄 수증기개질은 천연가스 개질을 대체할 수 있는 좋은 현실적인 대안이다. 하지만, 경제성과 환경 유해성을 모두 고려한다면 바이오가스를 직접 개질반응에 활용하는 바이오가스 수증기 개질 및 건식 개질을 활용한 수소 제조가 보다 효과적이라 평가된다. 본 논문에서는 바이오가스 기반 추출수소 제조 관련 최근의 기술 이슈 및 개발 동향을 소개하며 향후 상업화를 위한 효과적인 적용 방향에 대해서 고찰하고자 한다.
Hydrogen production from biogas has received consistent attention due to the great potential to solve simultaneously the issues of energy demands and environmental problems. Practically, biomethane produced by purification/upgrading of biogas can be a good alternative to the natural gas which is a main reactant for a steam methane reforming process. Judging from the economic and environmental impacts, however, the steam biogas and dry reforming are considered to be more effective routes for hydrogen production because both processes do not require the carbon dioxide elimination step. Herein, we highlight recent studies of hydrogen production via reforming processes using biogas and effective applications for earlier commercialization.
- Figueres C, Le Quere C, Mahindra A, Bate O, Whiteman G, Peters G, Guan D, Nature, 564(7734), 27 (2018)
- Le Quere C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers P, Korsbakken JI, Peters GP, Canadell JG, Earth Syst. Sci. Data, 10, 2141 (2018)
- Marcoberardino GD, Vitali D, Spinelli F, Binotti M, Manzolini G, Processes, 6, 19 (2018)
- Sumbramani V, Basile A, Verizoglu NT, Compendium of Hydrogen Energy: Hydrgoen Production and Purification, The Netherlands (2015).
- Adnan AI, Ong MY, Nomanbhay S, Chew KW, Show PL, Bioengineering, 6, 92 (2019)
- Khan IU, Othman MHD, Hashim H, Matsuura T, Ismail AF, Rezaei-DashtArzhandi M, Azelee IW, Energy Conv. Manag., 150, 277 (2017)
- Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X, Renew. Sust. Energ. Rev., 51, 521 (2015)
- Gao YC, Jiang JG, Meng Y, Yan F, Aihemaiti A, Energy Conv. Manag., 171, 133 (2018)
- Braga LB, Silveira JL, Silva ME, Tuna CE, Machin EB, Pedroso DT, Renew. Sust. Energ. Rev., 28, 166 (2013)
- Arora S, Prasad R, RSC Adv., 6, 108668 (2016)
- Roy PS, Song J, Kim K, Park CS, Raju ASK, J. CO2 Util., 25, 275 (2018)
- Minh DP, Siang TJ, Vo DVN, Phan TS, Ridart C, Nziho A, Grouset D, Hydrogen Supply Chains, Chapter 4, 111-166 (2018).
- Wang SB, Lu GQ, Millar GJ, Energy Fuels, 10(4), 896 (1996)
- Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N, Waste Biomass Valori., 8, 267 (2017)
- Saur G, Milbrandt A, NREL, TP-5400-60283 (2014).
- Hakawati R, Smyth BM, McCullough G, De Rosa F, Rooney D, Appl. Energy, 206, 1076 (2017)
- Usman M, Daud WMAW, Abbas HF, Renew. Sust. Energ. Rev., 45, 710 (2015)
- Seo M, Kim SY, Kim YD, Park ED, Uhm S, Int. J. Hydrog. Energy, 43(24), 11355 (2018)
- Yun J, Cho K, Lee YD, Yu S, Int. J. Hydrog. Energy, 43(9), 4546 (2018)
- Settar A, Abboudi S, Madani B, Nebbali R, Heat Mass Transf., 54, 385 (2018)