화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.1, 19-24, February, 2020
Tween-Span계 혼합계면활성제를 이용한 Coconut Oil 원료 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화
Preparation of Coconut Oil in Water Emulsions Using Tween-Span Type Mixed Surfactant : Optimization of CCD-RSM
E-mail:
초록
본 연구에서는 coconut oil과 Tween-Span계 혼합계면활성제를 사용하여 O/W 유화액을 제조하고 유화안정성을 향상시키기 위한 유화조건을 최적화하였다. 이를 위해 최적화과정은 CCD-RSM (central composite design model-response surface methodology)를 이용하였다. 계량인자로는 HLB (hydrophile-lipophilie balance) value, 혼합계면활성제 첨가량, 유화 속도 등을 설정하였으며, 반응치로는 평균액적크기(MDS), 유화액의 유화안정도지수(ESI), 열적 불안정도지수(TII)를 설정하였다. CCD-RSM 분석결과 3가지 반응치를 동시에 만족하는 최적조건으로 HLB value (9.1), 혼합계면활성제 첨가량(8.7 wt.%), 유화속도(6,200.8 rpm)로 산출되었으며, CCD-RSM 분석예상값은 MDS (151.0 nm), 유화액의 ESI (99.86%), TII (3.17%)로 나타났다. 이 조건에서의 실제실험 결과 오차율은 3.5% 이하로 나타나 본 연구에서의 O/W 유화액 제조 과정에 CCD-RSM 최적화 분석을 적용할 경우 비교적 높은 유의수준의 결과를 얻을 수 있었다.
In this study, the O/W emulsions prepared from coconut oil and the non-ionic mixed surfactant as Tween-Span system were evaluated and optimized in order to upgrade the stability of manufactured emulsions. For the optimization, a central composite design model-response surface methodology, so called as CCD-RSM was implemented. Quantitative factors were the hydrophile-lipophilie balance (HLB), amount of non-ionic mixed surfactant and emulsification speed while experimental results included the mean droplet size (MDS), emulsion stability index (ESI), and thermal instability index (TII). Optimized values of the HLB, amount of non-ionic mixed surfactant and emulsification speed obtained from CCD-RSM were 9.1, 8.7 wt.%, and 6,200.8 rpm, respectively. Expected experimental results for MDS, ESI, and TII under the optimized experimental condition were 151.0 nm, 99.86, and 3.17%, respectively. The average error from actual experiments which established for validation of the conclusions was lower than 3.5%. Therefore, a highly favorable level could be obtained when the optimized CCD-RSM was applied to manufacturing the O/W emulsion in this study.
  1. Ficheux AS, Gomez-Berrada MP, Roudot AC, Ferret PJ, Food Chem. Toxicol., 124, 280 (2019)
  2. Katz LM, Dewan K, Bronaugh RL, Food Chem. Toxicol., 85, 127 (2015)
  3. Dave AC, Ye A, Singh H, Food Chem., 276, 129 (2019)
  4. Pengon S, Chinatangkul N, Limmatvapirat C, Limmatvapirat S, Asian J. Pharm. Sci., 13(5), 409 (2018)
  5. Nesterenko A, Drelich A, Lu H, Clausse D, Pezron I, Colloids Surf. A: Physicochem. Eng. Asp., 457, 49 (2014)
  6. Orafidiya LO, Oladimeji FA, Int. J. Pharm., 237, 241 (2002)
  7. Liang J, Qian Y, Yuan X, Leng L, Zeng G, Jiang L, Shao L, Luo Y, Ding X, Yang Z, Li X, J. Renew. Energy, 126, 774 (2018)
  8. Ponphaiboon J, Limmatvapirat S, Chaidedgumjorn A, Limmatvapirat C, J. Chromatogr. B, 1099, 1110 (2018)
  9. Chalapud MC, Baumler ER, Carelli AA, Food Res. Int., 108, 216 (2018)
  10. Hong SH, Zhu K, Zuo C, Lee SB, Appl. Chem. Eng., 30(4), 453 (2019)
  11. Castel V, Rubiolo AC, Carrara CR, Food Hydrocolloids, 63, 170 (2017)
  12. Wang Z, Hong J, Zhang L, Liu P, Energy Procedia, 105, 2163 (2017)
  13. Sharma J, Sukriti, Anand P, Pruthi V, Chaddha AS, Bhatia J, Kaith BS, Mater. Chem. Phys., 196, 270 (2017)