Applied Chemistry for Engineering, Vol.31, No.1, 43-48, February, 2020
나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성
Heat Shield Property of Nanostructural-regulated Fe2O3/TiO2 Composites Filled with Polyacrylate Paint
E-mail:
초록
본 연구에서는 침전과 수열처리에 의해 나노입방체와 나노막대구조를 갖는 Fe2O3 나노입자를 합성하였다. Fe2O3 나노 입자 표면에 TiO2가 20 nm 두께로 코팅된 Fe2O3/TiO2 core-shell (CS) 복합재료를 합성하였다. Fe2O3/TiO2 CS를 화학적에칭과 열처리에 의해 Fe2O3/TiO2 CS에서 Fe2O3/TiO2 yolk-shell (YS) 형태의 복합재료를 제조하였다. FE-SEM, HR-TEM, XRD 분석을 통하여 Fe2O3와 Fe2O3/TiO2 CS 및 Fe2O3/TiO2 YS 안료의 물리적 특성을 측정하였다. 안료를 poly acrylate (PA) 수지에 혼합한 도료들의 일사반사율과 색상변화는 UV-Vis-NIR 분석으로 차열 온도는 실험실에서 제작한 차열 온도 측정기를 통해 측정하였다. Fe2O3/TiO2 YS 적색 안료를 사용한 PA 도료는 우수한 근적외선 반사율을 보였으며, Fe2O3 안료를 사용한 도료에 비해 차열 온도가 13 ℃ 감소하였다.
Fe2O3 nanoparticles with the mixed structure of cubic and nanorod were synthesized by precipitation, hydrothermal, sol-gel method, etching process and heat treatment. Fe2O3/TiO2 core-shell (CS) of type Fe2O3@TiO2 composite was fabricated on a 20 nm nanolayer of TiO2 coated on the surface of Fe2O3 nanoparticles. Fe2O3/TiO2 yolk-shell (YS) composite was prepared by chemical etching and heat treatment of Fe2O3/TiO2 CS nanoparticles. Physical properties of Fe2O3, Fe2O3@TiO2 CS and Fe2O3@TiO2 YS nanoparticles were characterized by FE-SEM, HR-TEM and X-ray diffraction. The solar reflectance, commission internationale de l’Elcairage (CIE) color coordinate and heat shield temperatures of Fe2O3, CS and YS type Fe2O3@TiO2 pigments filled with poly acrylate (PA) paints were investigated by UV-Vis-NIR spectrometer and homemade heat shield temperature measuring device. The Fe2O3@TiO2 YS red pigment filled PA composite exhibited excellent near infrared light reflecting performance and also reduced the heat shield temperature of 13 ℃ than that of Fe2O3 filled counterparts.
- Kim DW, Yu JJ, Yoon JH, Son SW, J. Korean Geogr., 1, 47 (2019)
- Santamouris M, Cartalis C, Synnefa A, Kolokotsa D, Energy Build., 98, 119 (2015)
- Choi Y, Lee S, Moon H, Sustainability, 10, 4837 (2018)
- Jung HY, Kim DS, Lee HJ, Lee SH, Lim HM, Choi BK, Kang KJ, Choi JS, Korean J. Mater. Res., 12, 672 (2013)
- Lee HJ, Kim DS, Lee SH, Lim HM, Choi BK, Kang KJ, Jeong JI, Cho KS, Korean J. Mater. Res., 25(2), 61 (2015)
- Mahltig B, Bottcher H, Rauch K, Dieckmann U, Nitsche R, Fritz T, Thin Solid Films, 485(1-2), 108 (2005)
- Feng W, Patel SH, Young MY, Zunino JL, Xanthos M, Adv. Polym. Technol., 26(1), 1 (2007)
- Guo C, Yin S, Sato T, J. Mater. Chem., 21, 5099 (2011)
- Kil HS, Rhee SW, Appl. Chem. Eng., 27(1), 16 (2016)
- Wang JL, Li YQ, Byon YJ, Mei SG, Zhang GL, Powder Technol., 235, 303 (2013)
- Zou J, Zhang P, Liu C, Peng Y, Dyes Pigment., 109, 113 (2014)
- Lu X, Yu G, Hu B, Zhang J, Dong Q, J. Coat. Technol. Res., 11, 567 (2014)
- Soumya S, Mohamed AP, Mohan K, Ananthakumar S, Sol. Energy Mater. Sol. Cells, 143, 335 (2015)
- Zhang HZ, Penn RL, Hamers RJ, Banfield JF, J. Phys. Chem. B, 103(22), 4656 (1999)
- Ye C, Wen X, Lan J, Cai Z, Pi P, Xu S, Qian Y, Pigment Resin Technol., 45, 45 (2016)
- Wu K, Xiang S, Zhi W, Bian R, Wang C, Cai D, Prog. Org. Coat., 113, 39 (2017)
- Park J, Joo J, Kwon SG, Jang Y, Hyeon T, Angew. Chem.-Int. Edit., 46, 4630 (2007)
- Hanaor DA, Chironi I, Karatchevtseva I, Triani G, Sorrell CC, Adv. Appl. Ceram., 111, 149 (2012)
- Cargnello M, Gordon TR, Murray CB, Chem. Rev., 114(19), 9319 (2014)
- Mariappan T, Agarwal A, Ray S, Prog. Org. Coat., 111, 67 (2017)
- Han AJ, Ye MQ, Liu LL, Feng W, Zhao MC, Energy Build., 84, 698 (2014)
- Zheng X, Fu W, Kang F, Peng H, Wen J, J. Ind. Eng. Chem., 68, 14 (2018)
- Demarchis L, Sordello F, Minella M, Minero C, Dyes Pigment., 115, 204 (2015)
- Berns RS, Billmeyer and Saltzman’s Principles of Color Technology, 3th ed, 109-113, John Wily & Sons, NY, USA (2000).
- Kang Q, Bao Y, Li M, Ma J, Prog. Org. Coat., 112, 153 (2017)
- Bao Y, Kang Q, Ma J, Colloids Surf. A: Physicochem. Eng. Asp., 537, 69 (2018)