화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.1, 43-48, February, 2020
나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성
Heat Shield Property of Nanostructural-regulated Fe2O3/TiO2 Composites Filled with Polyacrylate Paint
E-mail:
초록
본 연구에서는 침전과 수열처리에 의해 나노입방체와 나노막대구조를 갖는 Fe2O3 나노입자를 합성하였다. Fe2O3 나노 입자 표면에 TiO2가 20 nm 두께로 코팅된 Fe2O3/TiO2 core-shell (CS) 복합재료를 합성하였다. Fe2O3/TiO2 CS를 화학적에칭과 열처리에 의해 Fe2O3/TiO2 CS에서 Fe2O3/TiO2 yolk-shell (YS) 형태의 복합재료를 제조하였다. FE-SEM, HR-TEM, XRD 분석을 통하여 Fe2O3와 Fe2O3/TiO2 CS 및 Fe2O3/TiO2 YS 안료의 물리적 특성을 측정하였다. 안료를 poly acrylate (PA) 수지에 혼합한 도료들의 일사반사율과 색상변화는 UV-Vis-NIR 분석으로 차열 온도는 실험실에서 제작한 차열 온도 측정기를 통해 측정하였다. Fe2O3/TiO2 YS 적색 안료를 사용한 PA 도료는 우수한 근적외선 반사율을 보였으며, Fe2O3 안료를 사용한 도료에 비해 차열 온도가 13 ℃ 감소하였다.
Fe2O3 nanoparticles with the mixed structure of cubic and nanorod were synthesized by precipitation, hydrothermal, sol-gel method, etching process and heat treatment. Fe2O3/TiO2 core-shell (CS) of type Fe2O3@TiO2 composite was fabricated on a 20 nm nanolayer of TiO2 coated on the surface of Fe2O3 nanoparticles. Fe2O3/TiO2 yolk-shell (YS) composite was prepared by chemical etching and heat treatment of Fe2O3/TiO2 CS nanoparticles. Physical properties of Fe2O3, Fe2O3@TiO2 CS and Fe2O3@TiO2 YS nanoparticles were characterized by FE-SEM, HR-TEM and X-ray diffraction. The solar reflectance, commission internationale de l’Elcairage (CIE) color coordinate and heat shield temperatures of Fe2O3, CS and YS type Fe2O3@TiO2 pigments filled with poly acrylate (PA) paints were investigated by UV-Vis-NIR spectrometer and homemade heat shield temperature measuring device. The Fe2O3@TiO2 YS red pigment filled PA composite exhibited excellent near infrared light reflecting performance and also reduced the heat shield temperature of 13 ℃ than that of Fe2O3 filled counterparts.
  1. Kim DW, Yu JJ, Yoon JH, Son SW, J. Korean Geogr., 1, 47 (2019)
  2. Santamouris M, Cartalis C, Synnefa A, Kolokotsa D, Energy Build., 98, 119 (2015)
  3. Choi Y, Lee S, Moon H, Sustainability, 10, 4837 (2018)
  4. Jung HY, Kim DS, Lee HJ, Lee SH, Lim HM, Choi BK, Kang KJ, Choi JS, Korean J. Mater. Res., 12, 672 (2013)
  5. Lee HJ, Kim DS, Lee SH, Lim HM, Choi BK, Kang KJ, Jeong JI, Cho KS, Korean J. Mater. Res., 25(2), 61 (2015)
  6. Mahltig B, Bottcher H, Rauch K, Dieckmann U, Nitsche R, Fritz T, Thin Solid Films, 485(1-2), 108 (2005)
  7. Feng W, Patel SH, Young MY, Zunino JL, Xanthos M, Adv. Polym. Technol., 26(1), 1 (2007)
  8. Guo C, Yin S, Sato T, J. Mater. Chem., 21, 5099 (2011)
  9. Kil HS, Rhee SW, Appl. Chem. Eng., 27(1), 16 (2016)
  10. Wang JL, Li YQ, Byon YJ, Mei SG, Zhang GL, Powder Technol., 235, 303 (2013)
  11. Zou J, Zhang P, Liu C, Peng Y, Dyes Pigment., 109, 113 (2014)
  12. Lu X, Yu G, Hu B, Zhang J, Dong Q, J. Coat. Technol. Res., 11, 567 (2014)
  13. Soumya S, Mohamed AP, Mohan K, Ananthakumar S, Sol. Energy Mater. Sol. Cells, 143, 335 (2015)
  14. Zhang HZ, Penn RL, Hamers RJ, Banfield JF, J. Phys. Chem. B, 103(22), 4656 (1999)
  15. Ye C, Wen X, Lan J, Cai Z, Pi P, Xu S, Qian Y, Pigment Resin Technol., 45, 45 (2016)
  16. Wu K, Xiang S, Zhi W, Bian R, Wang C, Cai D, Prog. Org. Coat., 113, 39 (2017)
  17. Park J, Joo J, Kwon SG, Jang Y, Hyeon T, Angew. Chem.-Int. Edit., 46, 4630 (2007)
  18. Hanaor DA, Chironi I, Karatchevtseva I, Triani G, Sorrell CC, Adv. Appl. Ceram., 111, 149 (2012)
  19. Cargnello M, Gordon TR, Murray CB, Chem. Rev., 114(19), 9319 (2014)
  20. Mariappan T, Agarwal A, Ray S, Prog. Org. Coat., 111, 67 (2017)
  21. Han AJ, Ye MQ, Liu LL, Feng W, Zhao MC, Energy Build., 84, 698 (2014)
  22. Zheng X, Fu W, Kang F, Peng H, Wen J, J. Ind. Eng. Chem., 68, 14 (2018)
  23. Demarchis L, Sordello F, Minella M, Minero C, Dyes Pigment., 115, 204 (2015)
  24. Berns RS, Billmeyer and Saltzman’s Principles of Color Technology, 3th ed, 109-113, John Wily & Sons, NY, USA (2000).
  25. Kang Q, Bao Y, Li M, Ma J, Prog. Org. Coat., 112, 153 (2017)
  26. Bao Y, Kang Q, Ma J, Colloids Surf. A: Physicochem. Eng. Asp., 537, 69 (2018)