Journal of Industrial and Engineering Chemistry, Vol.83, 252-259, March, 2020
Synergistic interaction of P and N co-doping EDTA with controllable active EDTA-cobalt sites as efficient electrocatalyst for oxygen reduction reaction
E-mail:
It is extremely advisable but challenging to develop cathodic catalyst for efficiently catalyzing the oxygen reduction reaction (ORR) in energy storage and conversion system. Nitrogen (N) and phosphorus (P) co- doped porous carbon (C) materials have been prepared as a non-precious metal catalyst. This synthesis was achieved through pyrolysis of ethylenediaminetetraacetic acid, triphenylphosphine, melamine and CoCl2 6H2 O mixture. The resulting material was capable of efficiently charge transfer via the coordination bond of cobalt (Co) and EDTA, that makes octahedral structure. In addition, redistribution of charge occurred due to co-doping of the N and P, which is advantageous for the oxygen reduction reaction (ORR). The as- prepared N and P co-doped mesoporous carbon (NPMPC) was characterized by a high average porosityand a high specific surface area. Furthermore, the NPMPC had a positive effect on ORR by allowing triple phases (gas-liquid-solid) to coexist in a wide range. We have successfully fabricated electrochemical catalysts that have not been reported previously. The electrocatalytic activity of NPMPC-0.6 (E onset:-0.08 V & Ehalf-wave:- 0.136 V)for ORR in alkalinemediawasbetterthanPt/C(Eonset:-0.037 V &Ehalf-wave:-0.122 V).Overall,NPMPC- 0.6 showed high efficiency and improved performance for oxygen reduction reaction.
Keywords:Oxygen reduction reaction;Ethylenediaminetetraacetic acid (EDTA);Nitrogen and phosphorus co-doping;mesoporous carbon;High specific surface area with six;coordination between Co and EDTA
- Steele BC, Heinzel A, Nature, 414, 345 (2001)
- Wang X, Lee JS, Zhu Q, Liu J, Wang Y, Dai S, Chem Mater., 22, 2178 (2010)
- Chen W, Kim J, Sun S, Chen S, J. Phys. Chem, C, 112, 3891 (2008)
- Debe MK, Nature, 486(7401), 43 (2012)
- Erickson EM, Thorum MS, Vasic’ R, Marinkovic’ NS, Frenkel AI, Gewirth AA, Nuzzo R, J. Am. Chem. Soc., 134, 197 (2011)
- Guo SJ, Sun SH, J. Am. Chem. Soc., 134(5), 2492 (2012)
- Bing Y, Liu H, Zhang L, Ghosh D, Zhang J, Chem. Soc. Rev., 39, 2184 (2010)
- Kim NY, Lee JH, Kwon JA, Yoo SJ, Jang JH, Kim HJ, Lim DH, Kim JY, J. Ind. Eng. Chem., 46, 298 (2017)
- Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang WM, Zhu ZH, Smith SC, Jaroniec M, Lu GQ, Qiao SZ, J. Am. Chem. Soc., 133(50), 20116 (2011)
- Lyth SM, Nabae Y, Islam NM, Kuroki S, Kakimoto M, Miyata S, J. Electrochem. Soc., 158(2), B194 (2011)
- Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L, Angew. Chem.-Int. Edit., 123, 11960 (2011)
- Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S, ACS Nano, 6, 205 (2011)
- Kang SH, Yoo KS, Chung YJ, Kwon YC, J. Ind. Eng. Chem., 62, 329 (2018)
- Guo D, Shibuya R, Akiba C, Saji S, Kondo T, J. Nakamura, Science, 351, 361 (2016)
- Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ, Adv, Funct, Mater., 64, 424 (2013)
- Yang S, Zhi L, Tang K, Feng X, Maier J, Mullen K, Carbon, 22, 3634 (2012)
- Xue Y, Yu D, Dai L, Wang R, Li D, Roy A, Lu F, Chen H, Liu Y, Qu J, Phys. Chem., 15, 12220 (2013)
- Liu Q, Chen SL, Zhou Y, Zheng SQ, Hou HQ, Zhao F, J. Power Sources, 261, 245 (2014)
- Kang YS, Heo YH, Kim P, Yoo SJ, J. Ind. Eng. Chem., 52, 35 (2017)
- Han TH, Mohapatra D, Mahato N, Parida S, Shim JH, Nguyen ATN, Cho MH, Shim JJ, J. Ind. Eng. Chem. (2019).
- Kwon SH, Han SB, Kwak DH, Song JH, Park KW, J. Ind. Eng. Chem., 80, 171 (2019)
- Tak YJ, Yang SE, Lee HJ, Lim DH, Soon A, J. Ind. Eng. Chem., 58, 208 (2018)
- Zhang J, Dai L, ACS catal., 5, 7244 (2015)
- Maldonado S, K. J. Phys. Chem. B., 109, 4707 (2005)
- Yang W, Fellinger TP, Antonietti M, J. Am. Chem. Soc. Commun., 133, 206 (2010)
- Liu RL, von Malotki C, Arnold L, Koshino N, Higashimura H, Baumgarten M, Mullen K, J. Am. Chem. Soc., 133(27), 10372 (2011)
- Choi CH, Park SH, Woo S, ACS Nano, 6, 7084 (2012)
- Jin J, Pan F, Jiang L, Fu X, Liang A, Wei Z, Zhang J, Sun G, J. Am. Chem. Soc., 8, 3313 (2014)
- Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS, ACS Nano, 134, 16127 (2012)
- Su Y, Zhang Y, Zhuang X, Li S, Wu D, Zhang F, Feng X, Carbon, 62, 296 (2013)
- Dong Y, Pang H, Yang H, Jiang J, Chi Y, Yu T, RSC Adv., 4, 32791 (2014)
- Jiang S, Zhu C, Dong S, J. Mater. Chem. A., 1, 3593 (2013)
- Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Angew. Chem.-Int. Edit., 55, 10800 (2016)
- Liang HW, Wei W, Wu ZS, Feng XL, Mullen K, J. Am. Chem. Soc., 135(43), 16002 (2013)
- Yu J, Chen G, Sunarso J, Zhu Y, Ran R, Zhu Z, Zhou W, Shao Z, Adv. Sci., 3, 160006 (2016)
- Wu J, Jin C, Yang Z, Tian J, Yang R, Carbon, 82, 562 (2015)
- Jiang SJ, Ma YW, Jian GQ, Tao HS, Wang XZ, Fan YN, Lu YN, Hu Z, Chen Y, Adv. Mater., 21(48), 4953 (2009)
- Fang Y, Lv YY, Che RC, Wu HY, Zhang XH, Gu D, Zheng GF, Zhao DY, J. Am. Chem. Soc., 135(4), 1524 (2013)
- Liu Z, Zhang G, Lu Z, Jin X, Chang Z, Sun X, Nano Res., 6, 293 (2013)
- Li W, Chen D, Li Z, Shi Y, Wan Y, Huang J, Yang J, Zhao D, Jiang Z, Electrochem Common, 9, 569 (2007)
- Han C, Bo XJ, Zhang YF, Li MA, Guo LP, J. Power Sources, 272, 267 (2014)
- Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele SV, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M, J. Phys. Chem. C., 113, 14302 (2009)
- Byon HR, Suntivich J, Shao-Horn Y, Chem. Mater., 23, 3421 (2011)
- Zhang Y, Mori T, Ye J, Antonietti M, J. Am. Chem. Soc. Common, 132, 6294 (2010)
- Zhang J, Qu L, Shi G, Liu J, Chen J, Dai L, Angew. Chem.-Int. Edit., 55, 2230 (2016)
- Li R, Wei Z, Gou X, ACS Catal., 5, 4133 (2015)
- Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S, ACS Catal., 5, 3625 (2015)
- Wu J, Yang Z, Li X, Sun Q, Jin C, Strasser P, Yang R, J. Mater. Chem. A., 1, 9889 (2013)
- Zhang CZ, Mahmood N, Yin H, Liu F, Hou YL, Adv. Mater., 25(35), 4932 (2013)