Journal of Industrial and Engineering Chemistry, Vol.84, 384-392, April, 2020
Facile graft copolymer template synthesis of mesoporous polymeric metal-organic frameworks to produce mesoporous TiO2: Promising platforms for photovoltaic and photocatalytic applications
E-mail:,
Mesoporous polymeric metal-organic frameworks (mesoporous polymeric MOFs) are prepared on fluorine-doped tin oxide (FTO) substrate using hydrophilic terephthalic acid as the ligands, titanium isopropoxide as polymeric MOF precursors, and amphiphilic graft copolymers (i.e., poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) as structure-directing agents. The hydrophilic POEM chains in amphiphilic graft copolymers interact with the hydrophilic ligands and polymeric MOF precursors. Following thermal treatment at 500 °C, mesoporous polymeric MOFs are transformed to mesoporous TiO2 with high specific surface area and crystallinity, suitable for photovoltaic and photocatalytic applications. Solid-state dye-sensitized solar cells (ssDSSCs) and dye-sensitized solar cells (DSSCs) fabricated with mesoporous TiO2 photoanodes have efficiencies of 7.45 and 8.43 % at 100 mW/cm2, which is much higher than that of ssDSSCs and DSSCs with photoanodes of conventional TiO2 (5.36 and 7.14 %), respectively. The enhanced efficiency is attributed to good interconnectivity, larger surface area, and high porosity of the mesoporous TiO2, which results in suppressed interfacial charge recombination loss, enhanced electron transport, increased dye loading, and facilitated penetration of the electrolytes. Mesoporous TiO2 shows excellent activity as a photocatalyst for the degradation of humic acid under UV light irradiation.
Keywords:Metal-organic framework (MOF);Mesoporous;Graft copolymer;Titanium dioxide (TiO2);Dye-sensitized solar cell (DSSC);Photocatalyst;Polymerized ionic liquid
- Crossland EJW, Noel N, Sivaram V, Leijtens T, Alexander-Webber JA, Snaith HJ, Nature, 495(7440), 215 (2013)
- Rudra S, Sarker S, Kim DM, J. Ind. Eng. Chem., 80, 513 (2019)
- Cho SH, Kim HB, Sung MM, J. Ind. Eng. Chem., 77, 470 (2019)
- Lim JM, Park JH, Park JT, Bae SJ, J. Ind. Eng. Chem., 71, 378 (2019)
- Nath NCD, Lee JJ, J. Ind. Eng. Chem., 78, 53 (2019)
- Xiong H, Wu L, Liu Y, Gao T, Li K, Long Y, Zhang R, Zhang L, Qiao ZA, Huo Q, Ge X, Song S, Zhang H, Adv. Energy Mater, 9, 190163 (2019)
- Gesesse GD, Li C, Paineau E, Habibi Y, Remita H, Colbeau-Justin C, Ghazzal MN, Chem. Mater., 31, 4851 (2019)
- Li Y, Ma L, Yoo YS, Wang G, Zhang X, Ko MJ, J. Ind. Eng. Chem., 73, 351 (2019)
- Quy VHV, Park JH, Kang SH, Kim HS, Ahn KS, J. Ind. Eng. Chem., 70, 322 (2019)
- Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OK, Nature, 427, 523 (2004)
- Metzger ED, Comito RJ, Wu Z, Zhang G, Dubey RC, Xu W, Miller JT, Dinca M, ACS Sustain. Chem. Eng., 7, 6654 (2019)
- Zhang R, Zhang D, Yao Y, Zhang Q, Xu Y, Wu Y, Yu H, Lu G, ACS Appl. Mater. Interfaces, 11, 21010 (2019)
- Guo HX, Wang DF, Chen JH, Weng W, Huang MQ, Zheng ZS, Chem. Eng. J., 289, 479 (2016)
- Wang TC, Doty FP, Benin AI, Sugar JD, York WL, Reinheimer EW, Stavila V, Allendorf MD, Chem. Commun., 55, 4647 (2019)
- Hossain MI, Cunningham JD, Becker TM, Grabicka BE, Walton KS, Rabideau BD, Glover TG, Chem. Eng. J., 203, 346 (2019)
- Fang D, Wang Y, Qian C, Liu X, Wang X, Chen S, Zhang S, Adv. Funct. Mater., 29, 190087 (2019)
- Wang XS, Ma SQ, Sun DF, Parkin S, Zhou HC, J. Am. Chem. Soc., 128(51), 16474 (2006)
- Roy X, Thompson LK, Coombs N, MacLachlan MJ, Angew. Chem.-Int. Edit., 47, 511 (2008)
- Ayala S, Bentz KC, Cohen SM, Chem. Sci., 10, 1746 (2019)
- Yu C, Wang Y, Cui J, Yu D, Zhang X, Shu X, Zhang J, Zhang Y, Vajtai R, Ajayan PM, Wu Y, J. Mater. Chem. A, 6, 8396 (2018)
- Li Y, Xu Y, Yang W, Shen W, Xue H, Pang H, Small, 14, 170443 (2018)
- Park JT, Chi WS, Jeon H, Kim JH, Nanoscale, 6, 2718 (2014)
- Chi WS, Kim DH, Lee CS, Park JT, Kim JH, Appl. Surf. Sci., 457, 1151 (2018)
- Park JT, Lee CS, Kim JH, Nanoscale, 7, 670 (2015)
- Dan-Hardi M, Serre C, Frot T, Rozes L, Maurin G, Sanchez C, Ferey G, J. Am. Ceram. Soc., 131, 10857 (2009)
- Choi GH, Lim SM, Moon J, Lim JM, Baek UC, Park JT, Chem. Commun., 55, 11013 (2019)
- Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z, Angew. Chem.-Int. Edit., 51, 3364 (2012)
- ICDD-JCPDS database, no. 86-1157.
- Park JT, Roh DK, Patel R, Kim E, Ryu DY, Kim JH, J. Mater. Chem., 20, 8521 (2010)
- Wang M, Chen P, Humphry-Baker R, Zakeeruddin SM, Gratzel M, ChemphysChem, 10, 290 (2009)
- Bai Y, Yu H, Li Z, Amal R, Lu GQ, Wang LZ, Adv. Mater., 24(43), 5850 (2012)
- Pang HW, Yu HF, Huang YJ, Li CT, Ho KC, J. Mater. Chem. A, 6, 14215 (2018)
- Lennert A, Wagner K, Yunis R, Pringle JM, Guldi DM, Officer DL, ACS Appl. Mater. Interfaces, 10, 32271 (2018)
- Bharwal AK, Manceriu L, Iojoiu C, Dewalque J, Toupance T, Hirsch L, Henrist C, Alloin F, ACS Appl. Energy Mater., 1, 4106 (2018)
- Wang Q, Moser JE, Gratzel M, J. Phys. Chem. B, 109(31), 14945 (2005)
- Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM, ACS Nano, 5, 5158 (2011)
- Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH, Langmuir, 27(10), 6059 (2011)
- Iliev V, Tomova D, Bilyarska L, Tyuliev G, J. Mol. Catal. A-Chem., 263(1-2), 32 (2007)