화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.2, 172-178, April, 2020
마이크로웨이브를 이용한 폐식용유로부터 FAME의 제조 : RSM에 의한 공정변수 최적화
Microwave Mediated Production of FAME from Waste Cooking Oil : Optimization of Process Parameters by RSM
E-mail:
초록
본 연구에서는 마이크로웨이브를 이용한 폐유원료 바이오디젤 제조공정의 최적화 과정을 반응표면분석법을 이용해 진행하였다. 공정 변수로는 폐식용유의 산가, 마이크로웨이브 조사시간, 마이크로웨이브 조사온도, 알코올/유지 몰비 등을 선택하였고, 반응치로는 FAME 함량(96.5% 이상) 및 동점도(1.9~5.5 cSt)를 설정하였다. 기초실험을 통해 계량인자 변수범위를 마이크로웨이브 조사시간(4~6 min), 마이크로웨이브 조사세기(400~600 W), 알코올/유지 몰비(7~9)로 정하고, 반응표면분석법을 이용한 최적화 결과 바이오디젤 제조공정의 최적조건은 산가(2.0, 3.0 mg KOH/g) 별로 마이크로웨이브 조사시간(5.0, 5.1 min), 마이크로웨이브 조사세기(481.3, 525.5 W), 메탄올/유지 몰비(7.9, 8.4)로 나타났고, 이 조건에서 FAME 함량(97.49, 96.34%)과 동점도(4.01, 4.12 cSt)로 예측되었다. 실제 실험을 통해 확인한 결과는 FAME 함량(97.82, 96.42%)과 동점도(4.07, 4.16 cSt)로 측정되었고, 이의 평균 오차율은 각각 0.22, 0.98%로 나타났다.
In this study, the optimization of the biodiesel production process from waste oil using microwave with response surface methodology (RSM) was conducted. The microwave irradiation time and power in addition to the alcohol/oil mole ratio were chosen as process parameters. Also the fatty acid methyl ester (FAME) content (over 96.5%) and kinematic viscosity (1.9~5.5 cSt) were selected as response values. From basic experiments, the range of quantitative factors were set as following; 4~6 min, 400~600 W, and 7~9 for the microwave irradiation time and power, and alcohol/oil molar ratio, respectively. The optimum conditions for the methanolysis were 5.0~5.1 min, 481.3~525.5 W, 7.9~8.4, and 2.0 or 3.0 mg KOH/g for the microwave irradiation time and power, methanol/oil molar ratio, and each acid value, respectively. The FAME content and kinematic viscosity were predicted as 97.49~96.34% and 4.01~4.12 cSt, respectively, under the condition above. Under the optimum experimental conditions, the results showed that the FAME content and kinematic viscosity of 97.82~96.42% and 4.07~4.16 cSt, respectively were measured and the mean error rates were 0.22% and 0.98%, respectively.
  1. Anwar M, Rasul MG, Ashwath N, Energy Conv. Manag., 156, 103 (2018)
  2. Hamze H, Akia M, Yazdani F, Process Saf. Environ. Prot., 94, 1 (2015)
  3. Kassem Y, Camur H, Esenel E, Procedia Comput. Sci., 120, 521 (2017)
  4. Nejad AS, Zahedi AR, Renew. Energy, 119, 365 (2018)
  5. Varatharajan K, Pushparani DS, Renew. Sust. Energ. Rev., 82, 2017 (2018)
  6. Madiwale S, Karthikeyan A, Bhojwani V, Mater. Today : Proc., 5, 657 (2018)
  7. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA, Chem. Mater., 11, 882 (1999)
  8. Farinas JC, Moreno R, Perez A, Garcia MA, Garcia-Hemandez M, Salvador MD, Borrell A, J. Eur. Ceram. Soc., 38, 2360 (2018)
  9. Shen ML, Fu L, Tang JH, Liu MY, Song YT, Tian FY, Zhao ZG, Zhang ZH, Dionysiou DD, J. Hazard. Mater., 350, 1 (2018)
  10. Gupta AR, Rathod VK, Renew. Energy, 121, 757 (2018)
  11. Ohale PE, Uzoh CF, Onukwuli OD, S. Afr. J. Chem. Eng., 24, 43 (2017)
  12. Tan YH, Abdullah MO, Nolasco-Hipolito C, Zauzi NSA, Renew. Energy, 114, 437 (2017)