화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.85, 87-93, May, 2020
Optimization of carbon-supported Ir.Ru alloys for polymer electrolyte fuel cell anodes under cell reversal
E-mail:
Cell reversal (CR) caused by fuel starvation can significantly affect the performance of the polymer electrolyte membrane fuel cells (PEMFCs). To mitigate this issue, carbon-supported Ir.Ru alloys are considered as one of the most promising PEMFC anode materials. Herein, carbon-supported Ir.Ru alloys were prepared via a simple wet impregnation method followed by solid-state reduction at temperatures of 200, 250, and 300 °C under H2 gas flow and 300, 600, and 900 °C under N2 gas flow. The size, stoichiometric composition, and structural information of the prepared IrRu4/C were investigated using transmission electron microscopy, scanning electron microscopy.energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray absorption fine structure, the results of which exhibited different electrochemical properties in terms of hydrogen oxidation reaction and oxygen evolution reaction (OER). The electrochemical results showed the enhanced OER activities of IrRu4/C formed at 200 °C under H2. Furthermore, IrRu4/C can be formed under N2 with a change in the reduction temperature. This study provides fundamental properties for optimizing synthetic parameters of Ir.Ru-based catalysts to alleviate the degradation of conventional carbon-supported Pt owing to CR issues.
  1. Migliardini F, Veneri O, Corbo P, J. Ind. Eng. Chem., 17(3), 633 (2011)
  2. Pak C, Lee SW, Baik C, Lee BH, You DJ, You E, Chin. Chem. Lett., 30, 1186 (2019)
  3. Pollet BG, Kocha SS, Staffell I, Curr. Opin. Electrochem., 16, 90 (2019)
  4. You E, Min M, Jin SA, Kim T, Pak C, J. Electrochem. Soc., 165(6), F3094 (2018)
  5. Lee SW, Lee BH, Kim TY, Baik C, Kim MS, Chai GS, Pak C, Catal. Commun., 130, 105758 (2019)
  6. Park JE, Karuppannan M, Kwon OJ, Cho YH, Sung YE, J. Ind. Eng. Chem., 80, 527 (2019)
  7. Kang YS, Choi DI, Park HY, Yoo SJ, J. Ind. Eng. Chem., 78, 448 (2019)
  8. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM, Chem. Soc. Rev., 46, 337 (2017)
  9. Trasatti S, Electrochim. Acta, 29, 1503 (1984)
  10. Danilovic N, Subbaraman R, Chang KC, Chang SH, Kang YJ, Snyder J, Paulikas AP, Strmcnik D, Kim YT, Myers D, J. Phys. Chem. Lett., 5, 2474 (2014)
  11. Kasian O, Geiger S, Stock P, Polymeros G, Breitbach B, Savan A, Ludwig A, Cherevko S, Mayrhofer KJJ, J. Electrochem. Soc., 163(11), F3099 (2016)
  12. Sun W,, Zang Z, Zaman WQ, Zhou Z, Cao L, Gong XQ, Yang J, Chem. Commun., 54, 996 (2018)
  13. Geiger S, Kasian O, Shrestha BR, Mingers AM, Mayrhofer KJJ, Cherevko S, J. Electrochem. Soc., 163(11), F3132 (2016)
  14. Zhong H, Xi J, Tang P, Li D, Feng Y, Catalysts, 5, 1211 (2015)
  15. Danilovic N, Subbaraman R, Chang KC, Chang SH, Kang Y, Snyder J, Paulikas AP, Strmcnik D, Kim YT, Myers D, Angew. Chem.-Int. Edit., 53, 14016 (2014)
  16. Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJJ, Catal. Today, 262, 170 (2016)
  17. Alia SM, Rasimick B, Ngo C, Neyerlin KC, Kocha SS, Pylypenko S, Xu H, Pivovar BS, J. Electrochem. Soc., 163(11), F3105 (2016)
  18. Cho J, Jang I, Park HS, Choi SH, Jang JH, Kim HJ, Yoon SP, Yoo SJ, Ham HC, Appl. Catal. B: Environ., 235, 177 (2018)
  19. Thomassen MS, Mokkelbost T, Sheridan E, Lind A, ECS Trans., 35, 271 (2011)
  20. Ohyama J, Kumada D, Satsuma A, J. Mater. Chem. A, 4, 15980 (2016)
  21. Qin B, Yu H, Gao X, Yao D, Sun X, Song W, Yi B, Zhao Z, J. Mater. Chem. A, 6, 20374 (2018)
  22. Atanasoski R, Cullen DA, Vernstrom G, Haugen G, Atanasoska L, ECS Electrochem. Lett., 2, F25 (2013)
  23. Carmo M, Dos Santos AR, Poco JGR, Linardi M, J. Power Sources, 173(2), 860 (2007)
  24. McCrory CCL, Jung SH, Peters JC, Jaramillo TF, J. Am. Chem. Soc., 135(45), 16977 (2013)
  25. McCrory CC, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF, J. Am. Ceram. Soc., 137, 4347 (2015)
  26. Jung S, McCrory CC, Ferrer IM Perters JC, Jaramillo TF, J. Mater. Chem. A, 4, 3068 (2016)
  27. Strickler AL, Escudero-Escribano M, Jaramillo TF, Nano Lett., 17, 6040 (2017)
  28. Durst J, Simon C, Hasche F, Gasteiger HA, J. Electrochem. Soc., 162(1), F190 (2015)
  29. Qin B, Yu H, Chi J, Jia J, Gao X, Yao D, Yi B, Shao Z, RSC Adv., 7, 31574 (2017)
  30. Atanasoska L, Atanasoski R, Trasatti S, Vacuum, 40, 91 (1990)
  31. Casalongue HGS, Ng ML, Kaya S, Friebel D, Ogasawara H, Nilsson A, Angew. Chem.-Int. Edit., 53, 7169 (2014)
  32. Morgan DJ, Surf. Interface Anal., 47, 1072 (2015)
  33. Li G, Li S, Ge J, Liu C, Xing W, J. Mater. Chem. A, 5, 17221 (2017)
  34. Jin SA, Pak C, Yoo DJ, Lee KH, US 2013/0137009 A1 (2013).
  35. Oh HS, Nong HN, Reier T, Bergmann A, Gliech M, de Araujo JF, Willinger E, Schlogl R, Teschner D, Strasser P, J. Am. Chem. Soc., 138(38), 12552 (2016)
  36. Pauporte T, Andolfatto F, Durand R, Electrochim. Acta, 45(3), 431 (1999)
  37. Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger HA, Energy Environ. Sci., 7, 2255 (2014)
  38. Zheng J, Zhuang Z, Xu B, Yan Y, ACS Catal., 5, 4449 (2015)
  39. Karuppannan M, Kim Y, Gok S, Lee E, Hwang JY, Jang JH, Cho YH, Lim T, Sung YE, Kwon OJ, Energy Environ. Sci., 12, 2820 (2019)
  40. Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ, J. Electrochem. Soc., 145(7), 2354 (1998)
  41. Uchida M, Aoyama Y, Tanabe M, Yanagihara N, Eda N, Ohta A, J. Electrochem. Soc., 142(8), 2572 (1995)
  42. Antolini E, Appl. Catal. B: Environ., 88(1-2), 1 (2009)
  43. Soboleva T, Zhao X, Malek K, Xie Z, Navessin T, Holdcroft S, ACS Appl. Mater. Interfaces, 2, 375 (2010)
  44. Roh CW, Kim HE, Choi J, Lim J, Lee H, J. Power Sources, 443, 227270 (2019)
  45. Mandal P, Hong BK, Oh JG, Litster S, J. Power Sources, 397, 397 (2018)
  46. Lim KH, Lee WH, Jeong Y, Kim H, J. Electrochem. Soc., 164(14), F1580 (2017)
  47. Hong BK, Mandal P, Oh JG, Litster S, J. Power Sources, 328, 280 (2016)
  48. Jang SE, Kim H, J. Am. Chem. Soc., 132(42), 14700 (2010)