화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.85, 94-101, May, 2020
Role of strontium as doping agent in LaMn0.5Ni0.5O3 for oxygen electro-catalysis
E-mail:
Doping is an effective way to trigger various behaviors in ceramics. LaMn0.5Ni0.5O3 perovskites with or without strontium (Sr) doping were prepared using a sol-gel process and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), and Brunauer. Emmett.Teller (BET) gas adsorption techniques. A structural transition in the LaMn0.5Ni0.5O3 perovskite was observed upon doping, suggesting its pinning effect on the crystal structure. The SEM and BET results showed that the incorporation of Sr2+ into this oxide material markedly decreased the particle size into the nanoscale range and increased the active surface area. The oxide electrocatalytic properties toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in an alkaline medium were measured using a rotating disk electrode. The results revealed that La0.8Sr0.2Ni0.5Mn0.5O3 is a more active catalyst than LaNi0.5Mn0.5O3 for the ORR and OER. The improved electrocatalytic performance of the Sr- doped oxide is related to the increase in ORR/OER current density and the positive shift in the ORR onset potential compared with that of the LaNi0.5Mn0.5O3 catalyst. The overall electron transfer number was measured as approximately 4. The basis of this enhanced performance is discussed in terms of the material electronic structure and morphology.
  1. Lee JS, Kim ST, Cao R, Choi NS, Liu M, Lee KT, Cho J, Adv. Eng. Mater., 1, 34 (2011)
  2. Park S, Shao YY, Liu J, Wang Y, Energy Environ. Sci., 5, 9331 (2012)
  3. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y, Phys J, Chem. Lett., 3, 399 (2012)
  4. Wang ZL, Xu D, Xu JJ, Zhang XB, Chem. Soc. Rev., 43, 7746 (2014)
  5. Bockris JOM, Otagawa T, J. Electrochem. Soc., 131, 290 (1984)
  6. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y, Science, 334(6061), 1383 (2011)
  7. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi h, Goodenough JB, Shao-Horn Y, Nat. Chem., 3, 546 (2011)
  8. Sunarso J, Torriero AAJ, Zhou W, Howlett PC, Forsyth M, J. Phys. Chem. C, 116, 5827 (2012)
  9. Jung JJ, Jeong HY, Lee JS, Kim MG, Cho J, Angew. Chem.-Int. Edit., 53, 4582 (2014)
  10. Read MSD, Islam MS, King F, Hancock FE, J. Phys. Chem. B, 103(9), 1558 (1999)
  11. Tanaka H, Misono M, Curr. Opin. Solid State. Mater. Sci., 5, 381 (2001)
  12. Zeng Z, Calle-Vallejo F, Mogensen MB, Rossmeisl J, Phys. Chem. Chem. Phys., 15, 7526 (2013)
  13. Hyodo T, Hayashi M, Miura N, Yamazoe N, J. Electrochem. Soc., 143(11), L266 (1996)
  14. Liu X, Gong H, Wang T, Guo H, Song L, Xia W, Gao B, Jiang Z, Feng L, He J, Chem. Asian J., 13, 528 (2018)
  15. Zhang D, Song Y, Du Z, Wang L, Li Y, Goodenough JB, J. Mater. Chem. A, 3, 9421 (2015)
  16. Kanagaraj I, Moni P, Prakash AS, Sustainable Energy Fuels, 3, 2657 (2019)
  17. Kozuka H, Ohbayashi K, Koumoto K, Sci. Technol. Adv. Mater., 16, 026001 (2015)
  18. Zhu H, Zhang P, Dai S, ACS Catal., 5, 6370 (2015)
  19. Du ZZ, Yang P, Wang L, Lu YH, Goodenough JB, Zhang J, Zhang DW, J. Power Sources, 265, 91 (2014)
  20. Yamazoe N, Teraoka Y, Catal. Today, 8, 175 (1990)
  21. Vasanthacharya NY, Ganguly P, Goodenough JB, Rao CNR, J. Phys. C, 17, 2745 (1984)
  22. Sarma DD, Rader O, Kachel T, Chainani A, Mathew M, Holldack K, Gudat W, Eberhardt W, Phys. Rev. B, 49, 14238 (1994)
  23. Asai K, Sekizawa H, Iida SJ, J. Phys. Soc. Jpn., 47, 1054 (1979)
  24. Sonobe M, Asai K, J. Phys. Soc. Jpn., 61, 4193 (1992)
  25. Blasse G, Phys J, Chem. Solids, 26, 1969 (1965)
  26. Troyanchuk LO, Karpinsky DV, Bushinsky MV, Sirenko VA, Sikolenko VV, Franz A, Low Temp. Phys., 43, 982 (2017)
  27. Han SW, Lee JD, Kim KH, Song H, Kim WJ, Kwon SJ, Lee HG, Hwang C, Jeong JI, Kang JS, J. Korean Phys. Soc., 40, 501 (2002)
  28. Kowalik M, Zalecki R, Kołodziejczyk A, Acta Phys. Pol. A, 117, 277 (2010)
  29. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS, Appl. Surf. Sci., 257(7), 2717 (2011)
  30. Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ, J. Phys. Chem. Lett., 4, 1254 (2013)
  31. Moulder JF, Stickle WF, Sobol PE, Bomben KD, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Minnesota, 1993.
  32. Tsai T, Barnett SA, Proc. Electrochem. Soc., 97-40, 368 (1997)
  33. Poux T, Napolskiy FS, Dintzer T, Keranguevena G, Istomin SY, Tsirlina GA, Antipov EV, Savinova ER, Catal. Today, 189(1), 83 (2012)