화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.4, 169-175, April, 2020
RF Magnetron Sputtering공정에 의해 IT유리에 적층시킨 Silicon Nitride 박막의 특성
Characteristics of Silicon Nitride Deposited Thin Films on IT Glass by RF Magnetron Sputtering Process
E-mail:
Silicon nitride thin films are deposited by RF (13.57 MHz) magnetron sputtering process using a Si (99.999 %) target and with different ratios of Ar/N2 sputtering gas mixture. Corning G type glass is used as substrate. The vacuum atmosphere, RF source power, deposit time and temperature of substrate of the sputtering process are maintained consistently at 2 ~ 3 × 10-3 torr, 30 sccm, 100 watt, 20 min. and room temperature, respectively. Cross sectional views and surface morphology of the deposited thin films are observed by field emission scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy. The hardness values are determined by nano-indentation measurement. The thickness of the deposited films is approximately within the range of 88 nm ~ 200 nm. As the amount of N2 gas in the Ar:N2 gas mixture increases, the thickness of the films decreases. AFM observation reveals that film deposited at high Ar:N2 gas ratio and large amount of N2 gas has a very irregular surface morphology, even though it has a low RMS value. The hardness value of the deposited films made with ratio of Ar:N2=9:1 display the highest value. The XPS spectrum indicates that the deposited film is assigned to non-stoichiometric silicon nitride and the transmittance of the glass with deposited SiO2-SixNy thin film is satisfactory at 97 %.
  1. Ahn HW, Oh JH, Kweon SG, Choi SD, J. Korean Soc. Manuf. Process. Eng., 13, 145 (2014)
  2. Lee SH, Song HE, Kang GH, Ahn HK, Han DY, Korean Inst. Electr. Eng., 62, 76 (2013)
  3. Kim KS, Kang GH, Yu GJ, J. Kor. Sol. Energ. Soc., 28, 5 (2008)
  4. Kong DY, Kim DH, Yun SH, Bae YH, Yu IS, Cho CS, Lee JH, J. Korean Vacuum Soc., 20, 233 (2011)
  5. Shatter proof film process, korvan Home Page, retrieved November, 2007 from korvanchem.kr/bbs.
  6. Nakata K, Sakai M, Ochiai T, Murakami T, Takagi K, Fujishima A, Langmuir, 27(7), 3275 (2011)
  7. Lee HR, Kim DJ, Lee KH, Surf. Coat. Technol., 142, 468 (2001)
  8. Hecht DS, Thomas D, Hu L, Ladous C, Lam T, Park YB, Irvin G, Drzaic P, J. Soc. Information Display, 17, 941 (2009)
  9. Yamaguchi N, Tadanaga K, Matsuda A, Minami T, Tatsumisago M, Surf. Coat. Technol., 201, 3653 (2006)
  10. Kum BG, Park YC, Chang YJ, Jeon JY, Jang HM, Thin Solid Films, 519(11), 3778 (2011)
  11. Louis B, Krins N, Faustini M, Grosso D, J. Phys. Chem. C, 115, 3115 (2011)
  12. Qiu W, Kang YM, Goddard LL, Appl. Phys. Lett., 96, 141116 (2010)
  13. Macleod HA, Thin-film Optical Filters, 2nd ed (Macmi llan, NY, USA, 1986), from http/ /www.thinfilmcenter.co/book.php.
  14. Dai JP, Gao W, Liu B, Cao XL, Tao T, Xie ZL, Zhao H, Chen DJ, Ping H, Zhang R, Appl. Surf. Sci., 364, 886 (2016)
  15. Ulvestad A, Andersen HF, Mæhlen JP, Prytz O, Kirkengen M, Sci. Rep., 7, 13315 (2017)
  16. Dergez D, Schneider M, Bittner A, Schmid U, Thin Solid Films, 589, 227 (2015)
  17. Barbour JC, Stein HJ, Popov OA, Yonder M, Outten CA, J. Vac. Sci. Technol. A, 9, 480 (1991)
  18. Kobayashi I, Ogawa T, Hotta S, Jpn. J. Appl. Phys., 31, 336 (1992)
  19. Kim JH. Thesis (in Korean), Inha University, Korea (2014).
  20. Cheng G, Qian J, Tang Z, Ding G, Ceram. Int., 41, 1879 (2015)
  21. Villa M, Caceres D, Prieto C, J. Appl. Phys., 94, 12 (2003)
  22. Diegues L, Caballero D, Calder J, Moreno M, Martnez E, Samitier J, Biosensors, 2, 114 (2012)
  23. Sun X, Liu HT, Cheng HF, RSC Advances, 7, 47833 (2017)
  24. Hirohata Y, Shimamoto N, Hino T, Yamashima T, Yabe K, Thin Slid Films, 253, 425 (1999)
  25. Gan Z, Wang C, Chen Z, J. Surface, 1, 59 (2018)