화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.3, 342-348, May, 2020
가공 송전선 빙설해 예방을 위한 코팅재의 결빙 방지 및 방열 성능 평가
Evaluation of Icephobic and Dissipation Performance on Coating Materials for Preventing Overhead Transmission Line from Ice/Snow Damages
E-mail:
초록
본 연구에서는 송전선 결빙으로 인한 피해를 최소화하고자 상온 경화형 실리콘 고무에 입자 크기와 혼합 배열을 달리한 알루미늄 안료를 첨가하여 결빙 방지 코팅재를 제조하였다. 접촉각과 표면에너지 측정을 통해 표면 거칠기가 높은 코팅재가 뛰어난 발수성을 가짐을 확인하였다. 하지만, 결빙 방지 성능은 표면 거칠기와 경도가 낮을수록 우수하였다. 연속허용전류 인가 실험 결과, 실리콘 고무 코팅재의 방열성능이 가장 우수하였으며, 이는 실리콘 고무의 복사율이 가장 컸기 때문이다. 또한 가속 열화 시험과 얼음 탈착/부착 반복 시험을 통하여 실리콘 고무 코팅재는 장기간 물성 변화 없이 우수한 결빙 방지 성능이 유지됨을 알 수 있었다. 본 연구를 통하여 개발된 코팅재는 송전선의 결빙 방지를 위해 충분히 사용될 수 있는 가능성을 보여주었으며, 특히 우수한 방열특성으로 인하여 송전선의 온도도 낮추어 주기 때문에 여름철 전력 효율을 높이는데도 크게 기여를 할 수 있을 것으로 생각된다.
In this work, we manufactured icephobic coating materials, consisting of aluminum pigment-added room temperature vulcanized silicone rubber, by varying the particle size and type of the aluminum pigment. From the measurements of contact angle and surface energy, the coating with higher surface roughness revealed superior water repellency. However, icephobic performance was inversely proportional to surface roughness and hardness. The continuous allowable current application test showed that the silicone rubber (SR) coating exhibited the highest heat dissipation capacity due to its higher emissivity close to ~1. Furthermore, the SR coating revealed the remarkable durability for the icephobicity in the long-term period, as evidenced from the accelerated degradation test and cyclic icing/de-icing test. The developed coating material broadens industrial applicability as the icephobic coatings in transmission line. Moreover, it is expected that the superior heat dissipation capability of the SR coating would enhance the power efficiency in summer.
  1. Kulinich SA, Farzaneh M, Appl. Surf. Sci., 255(18), 8153 (2009)
  2. Lilien JL, State of the Art of Conductor Galloping, CIGRE publication, Australia (2007).
  3. Bragg MB, Broeren AP, Blumenthal LA, Prog. Aerosp. Sci., 41, 323 (2005)
  4. Li Y, Tagawa K, Feng F, Li Q, He QB, Energy Conv. Manag., 85, 591 (2014)
  5. Lee J, Jung HY, Koo JR, Yoon Y, Jung HJ, J. Electr. Eng. Technol., 12, 969 (2017)
  6. Kwak MK, Shin J, J. Korean Soc. Noise Vibr. Eng., 26, 10 (2016)
  7. Farzaneh M, Atmospheric Icing of Power Networks, Springer Science & Business Media, Germany, 2011.
  8. Golovin K, Kobaku SPR, Lee DH, DiLoreto ET, Mabry JM, Tuteia A, Sci. Adv., 2, e15014 (2016)
  9. Kreder MJ, Alvarenga J, Kim P, Aizenberg J, Nat. Rev. Mater., 1, 15003 (2016)
  10. Farhadi S, Farzaneh M, Kulinich SA, Appl. Surf. Sci., 257(14), 6264 (2011)
  11. He Z, Xiao S, Gao H, He J, Zhang Z, Soft Matter, 13, 6562 (2017)
  12. Tao C, Li X, Liu B, Zhang K, Zhao Y, Zhu K, Yuan X, Prog. Org. Coat., 103, 48 (2017)
  13. Wang Y, Xue J, Wang Q, Chen Q, Ding J, ACS Appl. Mater. Interfaces, 5, 3370 (2013)
  14. Cho HJ, Kim YS, Jung YC, Lee SY, Korean J. Mater. Res., 29, 378 (2019)
  15. Tavman IH, J. Appl. Polym., 62, 2161 (1996)
  16. Kumlutas D, Tavman IH, Coban MT, Compos. Sci. Technol., 63, 113 (2003)
  17. Smith CA, Pigm. Resin Technol., 8, 17 (1979)
  18. Fu Q, Wu X, Kumar D, Ho JWC, Kanhere PD, Srikanth N, Liu E, Peter W, Chen Z, ACS Appl. Mater. Interfaces, 6, 20685 (2014)
  19. Ayres J, Simendinger WH, Balik CM, J. Coat. Technol. Res., 4, 463 (2007)
  20. Susoff M, Siegmann K, Pfaffenroth C, Hirayama M, Appl. Surf. Sci., 282, 870 (2013)
  21. Bharathidasan T, Kumar SV, Bobji MS, Chakradhar RPS, Basu BJ, Appl. Surf. Sci., 314, 241 (2014)
  22. Mandal J, Fu YK, Overvig AC, Jia MX, Sun KR, Shi NN, Zhou H, Xiao XH, Yu NF, Yang Y, Science, 362(6412), 315 (2018)
  23. Menini R, Farzaneh M, J. Adhes. Sci. Technol., 25(9), 971 (2011)
  24. Cho HJ, Kim YS, Lee HJ, Sohn SH, Jung YC, Han SC, Lee SY, Polym. Korea, 43(6), 946 (2019)
  25. Ke Z, Vagenes ET, Delabahan C, He J, Zhang Z, Sci. Rep., 7, 1 (2017)
  26. Chaudhury MK, Kim KH, Eur. Phys. J. E, 23, 175 (2007)
  27. Jellinek HHG, Kachi H, Kittaka S, Lee M, Yokota R, Colloid Polym. Sci. Kolloid-Zeitschrift Zeitschrift fur Polym., 256, 544 (1978).
  28. ANDERSSON LO, GOLANDER CG, PERSSON S, J. Adhes. Sci. Technol., 8(2), 117 (1994)
  29. Dou R, Chen J, Zhang Y, Wang X, Cui D, Song Y, Jiang L, Wang J, ACS Appl. Mater. Interfaces, 6, 6998 (2014)
  30. Wang ZJ, Kwon DJ, DeVries KL, Park JM, Exp. Therm. Fluid Sci., 60, 132 (2015)
  31. Chen J, Liu J, He M, Li K, Cui D, Zhang Q, Zeng X, Zhang X, Wang J, Song Y, Appl. Phys. Lett., 101, 2012 (2012)
  32. Stone HA, ACS Nano, 6, 6536 (2012)
  33. Zhu L, Xue J, Wang Y, Chen Q, Ding J, Wang Q, ACS Appl. Mater. Interfaces, 5, 4053 (2013)
  34. Holgate SA, Understanding Solid State Physics, CRC Press, USA, 2009.
  35. Gijsman P, Meijers G, Vitarelli G, Polym. Degrad. Stabil., 65, 433 (1999)
  36. Nagai N, Matsunobe T, Imai T, Polym. Degrad. Stabil., 88, 224 (2005)
  37. Camino G, Lomakin SM, Lageard M, Polymer, 43(7), 2011 (2002)