화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.87, 173-179, July, 2020
Infilling of highly ion-conducting gel polymer electrolytes into electrodes with high mass loading for high-performance energy storage
E-mail:
Full utilization of electrodes toward high-performance energy storage is challenging in cases where electrode/electrolyte interface is significant. From a practical perspective, this is particularly important in cases where a thick electrode or one with a high mass loading is needed. Here, we report an approach to increase the electrode performance by the infilling of a highly ion-conductive organic gel polymer electrolyte (EI-GPE, ionic conductivity ~9.2 mS cm-1) into a multi-walled carbon nanotube (MWCNT) electrode with high mass loadings of up to 26 mg cm-2 (or significant thicknesses of up to 443 μm). Typical GPE (t-GPE) with a film-forming property but moderate ionic conductivity (1.2 mS cm-1) is then placed over the EI-GPE-filled electrode surface, resulted in flexible supercapacitor. Infilling of EI-GPE into MWCNT electrode provides a large-ion accessible interface that affords the increase in volumetric capacitance and energy density, about sixfold greater than that of the typical supercapacitors configured by sandwiching t-GPE as both electrolyte and the separator between a pair of electrodes. Importantly, this method enables scaling of the areal capacitance with electrode thickness (or mass loading of active material). A pouch type EI-SC provides stable performance after bending, suggesting it holds the promise of flexible energy storage.
  1. Liu C, Yan X, Hu F, Gao G, Wu G, Yang X, Adv. Mater., 30, 170571 (2018)
  2. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W, Chem. Soc. Rev., 46, 6816 (2017)
  3. Wen L, Li F, Cheng HM, Adv. Mater., 28(22), 4306 (2016)
  4. Gates BD, Science, 323, 1566 (2009)
  5. Bauer S, Nat. Mater., 12(10), 871 (2013)
  6. Li W, Pang Y, Liu J, Liu G, Wang Y, Xia Y, RSC Adv., 7, 23494 (2017)
  7. Gao Y, Yan ZF, Gray JL, He X, Wang DW, Chen TH, Huang QQ, Li YGC, Wang HY, Kim SH, Mallouk TE, Wang DH, Nat. Mater., 18(4), 384 (2019)
  8. Fu K, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman ED, Hu L, Proc. Natl. Acad. Sci. U.S.A., 113, 7094 (2016)
  9. Nakayama M, Wada S, Kuroki S, Nogami M, Energy Environ. Sci., 3, 1995 (2010)
  10. Kim SK, Cho J, Moore JS, Park HS, Braun PV, Adv. Funct. Mater., 26(6), 903 (2016)
  11. Gogotsi Y, Nature, 509(7502), 568 (2014)
  12. Kondrat S, Perez CR, Presser V, Gogotsi Y, Kornyshev AA, Energy Environ. Sci., 5, 6474 (2012)
  13. Bondavalli P, Delfaure C, Legagneux P, Pribat D, J. Electrochem. Soc., 160(4), A601 (2013)
  14. Meng YN, Zhao Y, Hu CG, Cheng HH, Hu Y, Zhang ZP, Shi GQ, Qu LT, Adv. Mater., 25(16), 2326 (2013)
  15. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim BS, Hammond PT, Shao-Horn Y, Nat. Nanotechnol., 5(7), 531 (2010)
  16. Burke A, Electrochim. Acta, 53(3), 1083 (2007)
  17. Simon P, Gogotsi Y, Dunn B, Science, 343(6176), 1210 (2014)
  18. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
  19. Song Z, Zhu D, Li L, Chen T, Duan T, Duan H, Wang Z, Lv Y, Xiong W, Liu M, Gan L, Mater. Chem. A, 7, 1177 (2019)
  20. Song Z, Li L, Zhu D, Miao L, Duan H, Wang Z, Xiong W, Lv Y, Liu M, Gan L, J. Mater. Chem. A, 7, 816 (2019)
  21. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y, Science, 328(5977), 480 (2010)
  22. Lu X, Yu M, Wang G, Tong Y, Li Y, Energy Environ. Sci., 7, 2160 (2014)
  23. Wang XF, Lu XH, Liu B, Chen D, Tong YX, Shen GZ, Adv. Mater., 26(28), 4763 (2014)
  24. Stoller MD, Ruoff RS, Energy Environ. Sci., 3, 1294 (2010)
  25. Horng YY, Lu YC, Hsu YK, Chen CC, Chen LC, Chen KH, J. Power Sources, 195(13), 4418 (2010)
  26. Gogotsi Y, Simon P, Science, 334(6058), 917 (2011)
  27. Long L, Wang S, Xiao M, Meng Y, J. Mater. Chem. A, 4, 10038 (2016)
  28. Cheng X, Pan J, Zhao Y, Liao M, Peng H, Adv. Eng. Mater., 8, 170218 (2018)
  29. Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN, Nano Lett., 11, 5165 (2011)
  30. Kim SK, Koo HJ, Lee A, Braun PV, Adv. Mater., 26(30), 5108 (2014)
  31. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL, Science, 313, 1760 (2006)
  32. Shaijumon MM, Ou FS, Ci L, Ajayan PM, Chem. Commun., 2373 (2008).
  33. Izadi-Najafabadi A, Futaba DN, Iijima S, Hata K, J. Am. Chem. Soc., 132(51), 18017 (2010)
  34. Hwang KS, Yoon TH, Lee CW, Son YS, Hwang JK, J. Power Sources, 75(1), 13 (1998)
  35. Hsieh CT, Hsu SM, Lin JY, Teng H, J. Phys. Chem. C, 115, 12367 (2011)
  36. Pech D, Brunet M, Durou H, Huang PH, Mochalin V, Gogotsi Y, Taberna PL, Simon P, Nat. Nanotechnol., 5(9), 651 (2010)
  37. Taberna PL, Simon P, Fauvarque JF, J. Electrochem. Soc., 150(3), A292 (2003)
  38. Li X, Shao J, Kim SK, Yao C, Wang J, Miao YR, Zheng Q, Sun P, Zhang R, Braun PV, Nat. Commun., 9, 2578 (2018)