화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.88, 251-259, August, 2020
Study of activation mechanism for dual model pore structured carbon based on effects of molecular weight of petroleum pitch
E-mail:,
In this study, petroleum pitch-based activated carbon was prepared, and the correlation between the molecular weight of the pitch and the specific surface area of the prepared activated carbon was considered. The petroleum pitch was prepared by thermal synthesis of PFO (pyrolysis fuel oil) at 380~430 °C to control the molecular weight of the pitch, and the product was analyzed by MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight). The activation proceeded by using KOH at 850 °C for 1 hour, and the pore structure of the prepared activated carbon was characterized by the Brunauer.Emmett.Teller (BET) method. The pitch synthesized at low temperature had a high specific surface area to 1855 m2/g due to the presence of volatile compounds with values of 128 ~ 256 m/z, which formed cavities upon volatilization.
  1. Zhou Q, Wang X, Liu J, Zhang L, Chem. Eng. J., 200-202, 619 (2012)
  2. Malik PK, J. Hazard. Mater., 113, 81 (2004)
  3. Cho ES, Bai BC, Im JS, Lee CW, Kim S, J. Ind. Eng. Chem., 35, 341 (2016)
  4. Pietrzak R, Jurewicz K, Nowicki P, Babel K, Wachowska H, Fuel, 89(11), 3457 (2010)
  5. Wu QF, Zhang S, Fuel, 94(1), 426 (2012)
  6. Sekar M, Sakthi V, Rengaraj S, J. Colloid Interface Sci., 279(2), 307 (2004)
  7. Chingombe P, Saha B, Wakeman RJ, Carbon, 43, 3132 (2005)
  8. Park SJ, Shin JS, Shim JW, Ryu SK, J. Colloid Interface Sci., 275(1), 342 (2004)
  9. Qiao WM, Yoon SH, Mochida I, Yang JH, Waste Manage., 27, 1884 (2007)
  10. Liu CJ, Liang XY, Liu XJ, Wang Q, Teng N, Zhan L, Zhang R, Qiao WM, Ling LC, Appl. Surf. Sci., 254(9), 2659 (2008)
  11. Hamamoto Y, Saha BB Alam KCA, Koyama S, Akisawa A, Kashiwagi T, Int. J. Refrig., 29, 305 (2006)
  12. Yusof N, Ismail AF, J. Anal. Appl. Pyrolysis, 93, 1 (2012)
  13. Aquino CB, Silva JMR, Oliveira MHR, Coriolano ACF, Delgado RCOB, Fernandes VJ, Araujo AS, J. Therm. Anal. Calorim., 136, 2139 (2019)
  14. Silva JMR, Morais EKL, Silveira JB, Oliveira MHR, Coriolano ACF, Fernandes VJ, Araujo AS, J. Therm. Anal. Calorim., 136, 1861 (2019)
  15. Qiao WM, Ling LC, Zha QF, Liu L, J. Mater. Sci., 32(16), 4447 (1997)
  16. Guan T, Zhao J, Zhang G, Zhang D, Han B, Tang N, Wang J, Li K, Microporous Mesoporous Mater., 271, 118 (2018)
  17. Zhai D, Li B, Kang F, Du H, Xu C, Microporous Mesoporous Mater., 130, 224 (2010)
  18. Garcia R, Crespo JL, Martin SC, Snape CE, Moinelo SR, Energy Fuels, 17(2), 291 (2003)
  19. Martı’nez-Escandell M, Rodrı’guez-Valero MA, Coronado JS, Rodrı’guez-Reinoso F, Carbon, 40, 2843 (2002)
  20. Martı’nez-Escandell M, Torregrosa P, Marsh H, Rodrı’guez-Reinoso F, Santamarı’a-Ramı’rez R, Gomez-De-Salazar C, Romero-Palazon E, Carbon, 37, 1567 (1999)
  21. Mochida I, Korai Y, Ku C, Watanabe F, Sakai Y, Carbon, 38, 305 (2000)
  22. Torregrosa-Rodrı’guez P, Martı’nez-Escandell M, Rodrı’guez-Reinoso F, Marsh H, Salazar CG, Palazon ER, Carbon, 38, 535 (2000)
  23. Greinke RA, Carbon, 24, 677 (1986)
  24. Kim JG, Kim JH, Song BJ, Jeon YP, Lee CW, Lee YS, Im JS, Fuel, 167, 25 (2016)
  25. Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
  26. Edwards WF, Jin L, Thies MC, Carbon, 41, 2761 (2003)
  27. Burgess WA, Thies MC, Carbon, 49, 636 (2011)
  28. Kullkami SU, Hoffman WP, Thies MC, Carbon, 59, 33 (2013)
  29. Wang YW, Xiao N, Wang ZY, Li HJ, Yu ML, Tang YC, Hao MY, Liu C, Zhou Y, Qiu JS, Chem. Eng. J., 342, 52 (2018)
  30. He XJ, Li XJ, Ma H, Han JF, Zhang H, Yu C, Xiao N, Qiu JS, J. Power Sources, 340, 183 (2017)
  31. He X, Zhang H, Zhang H, Li X, Xiao N, Qiu J, J. Mater. Chem. A, 2, 19633 (2014)
  32. Krol M, Gryglewicz G, Machnikowski J, Fuel Process. Technol., 92(1), 158 (2011)
  33. Martinez-Escandell M, de Castro MM, Molina-Sabio M, Rodriguez-Reinoso F, Fuel Process. Technol., 106, 402 (2013)