화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.6, 315-320, June, 2020
2상 조직을 갖는 소부경화강의 항복 거동과 변형 시효 특성
Yielding Behavior and Strain Aging Properties of Bake Hardening Steel with Dual-Phase Microstructure
E-mail:
This study deals with the yielding behavior and strain aging properties of three bake hardening steels with dualphase microstructure, fabricated by varying the annealing temperature. Bake hardening and aging tests are performed to examine the correlation of martensite volume fraction with yielding behavior and strain aging properties of the bake hardening steels with dual-phase microstructure. The volume fraction of martensite increases with increasing annealing temperature. Roomtemperature tensile test results show that the yielding behavior changes from discontinuous-type to continuous-type with increasing volume fraction of martensite due to higher mobile dislocation density. According to the bake hardening and aging tests, the specimen with the highest fraction of martensite exhibited high bake hardening with low aging index because solute carbon atoms in ferrite and martensite effectively diffuse to dislocations during the bake hardening test, while in the aging test they diffuse at only ferrite due to lower aging temperature.
  1. Ramazani A, Bruehl S, Gerber T, Bleck W, Prahl U, Mater. Des., 57, 479 (2014)
  2. Berbenni S, Favier V, Lemoine X, Berveiller M, Scr. Mater., 51, 303 (2004)
  3. Liu T, Hou H, Zhang X, Liu H, Zhou Q, Zhang J, Gao R, Liu X, Lv Z, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 726, 160 (2018)
  4. Ormsuptave N, Uthaisangsuk V, Mater. Des., 118, 314 (2017)
  5. Zhang X, Hou H, Liu T, Zhou Q, Liu H, Zhang Y, Cui H, Lv Z, J. Iron Steel Res. Int., 25, 1287 (2018)
  6. Timokhina IB, Hodgson PD, Perelema EV, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 38, 2442 (2007)
  7. Timokhina IB, Perelema EV, Ringer SP, Zheng RK, Hodgson PD, ISIJ Int., 50, 574 (2010)
  8. De AK, Vandeputte S, De Cooman BC, Scr. Mater., 41, 831 (1999)
  9. Soliman M, Palkowski H, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 777, 1 (2020)
  10. Ramazani A, Bruehl S, Abbasi M, Bleck W, Prahl U, Steel Res., 87, 1559 (2016)
  11. Ji D, Zhang M, Zhu D, Luo S, Li L, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 708, 129 (2017)
  12. Chakraborty A, Adihikary M, Venugopalan T, Singh V, Nanda T, Kumar BR, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 676, 463 (2016)
  13. Satoh S, Okada S, Kato T, Hashimoto O, Hanazawa T, Tsuenekawa H, Kwasaki Steel Tech. Rep., 27, 31 (1992)
  14. Sillva JRGD, McLellan RB, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 26, 83 (1976)
  15. Ashby ME, Philos. Mag., 21, 399 (1970)
  16. Ashby ME, Strengthening Methods in Crystals, (Elsevier, Amsterdam, 1971), p. 137.
  17. Movahed P, Kolahgar S, Marashi SPH, Pouranvari M, Parvin N, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 518, 1 (2009)
  18. Sodjit S, Uthaisangsuk V, Mater. Des., 41, 370 (2012)
  19. Sarosiek AM, Owen WS, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 66, 13 (1984)
  20. Dieter GE, Mechanical Metallurgy, (McGraw-Hill, USA, 1988), p.188.
  21. Waterschoot T, De AK, Vandeputte S, De Cooman CD, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 34, 781 (2003)
  22. McLellan RB, Wasz ML, J. Phys. Chem. Solids, 54, 583 (1993)
  23. Shinohara Y, Hara T, Tsuru E, Asahi H, Terada Y, Ayukawa N, Murata M, Proc. Of the Seventeenth Interen. Offshore and Polar Engineering Conf., p.2949, Lisbon, Portugal (2007).
  24. Hara T, Terada Y, Shinohara Y, Asahi H, Doi N, Proc. Of the Nineteenth Interen. Offshore and Polar Engineering Conf., p. 73, Osaka, Japan (2009).