화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.4, 404-410, August, 2020
회화나무꽃 추출물이 함유된 Cosmeceuticals의 제조: Box-Behnken 설계모델을 이용한 최적화
Preparation of Cosmeceuticals Containing Flos Sophorae Immaturus Extracts: Optimization Using Box-Behnken Design Model
E-mail:
초록
본 연구에서는 Box-Behnken 설계모델(BBD-RSM)을 사용하여 회화나무꽃 추출물을 첨가한 cosmeceuticals 유화액의 안정성 조건을 최적화하였다. BBD-RSM의 독립변수로는 유화제의 첨가량, 회화나무꽃 추출물 첨가량, 유화시간, 유화속도 등을 설정하고, 반응치로는 O/W 유화액의 평균액적크기(MDS), 점도 및 유화안정도지수(ESI)를 설정하였다. BBD-RSM 최적화 분석결과 세 가지 반응치를 동시에 부합하는 최적조건은 유화시간(17.8 min), 유화속도(5505 rpm), 유화제의 첨가량(2.28 wt.%), 회화나무꽃 추출물 첨가량(1.05 wt.%)으로 산출되었으며, 이 조건에서의 BBD-RSM 예측 결과는 MDS (1875.5 nm), 점도(1789.7 cP), ESI (93.8%)로 얻었다. 또한 이 조건에서 실제 실험을 통해 얻은 결과는 이론 결과에 비래 평균오차율은 5% 이하로 나타났다. 따라서 본 연구에서 BBD-RSM 최적화 분석을 적용할 경우 비교적 높은 유의수준의 만족하는 결과를 얻을 수 있었다.
In this study, the stability criteria of cosmeceuticals emulsion containing Flos Sophorae Immaturus extracts was established using the Box-Behnken design model (BBD-RSM). As optimization conditions of the emulsification using the BBD-RSM, the amount of surfactant and additive, and emulsification time and speed were used as quantitative factors while mean droplet size (MDS), viscosity and emulsion stability index (ESI) were used as reaction values. According to the result of BBD-RSM, optimum conditions for the emulsification were as follows; the emulsification time and speed of 17.8 min and 5505 rpm, respectively and amounts of the emulsifier and additive of 2.28 and 1.05 wt.%, respectively. Under these conditions, the MDS, viscosity, and ESI after 7 days from the reaction were estimated as 1875.5 nm, 1789.7 cP, and 93.8%, respectively. The average error value from our actual experiments for verifying the conclusions was below 5%, which is mainly due to the fact that the BBD-RSM was applied to the optimized cosmeceuticals emulsification.
  1. Zouboulis CC, Makrantonaki E, Clin. Dermatol., 29, 3 (2011)
  2. Polijsak B, Dahmane RG, Godic A, Acta Dermatovenerol. Alp. Pannonica Adriat., 21, 33-36 (2012).
  3. Farage MA, Miller KW, Elsner P, Maibach HI, Int. J. Cosmet. Sci., 30, 87 (2008)
  4. Alberti A, Zelinski AAF, Zardo DM, Demiate IM, Nogueira A, Mafra LI, Food Chem., 149, 151 (2014)
  5. Ohale PE, Uzoh CF, Shamsuddeen AA, Chem. Eng. J., 313, 993 (2017)
  6. Lu Y, Foo LY, Food Chem., 68, 81 (2000)
  7. Intahphuak S, Khonsung P, Panthong A, Pharm. Biol., 48(2), 151 (2010)
  8. Marina AM, Cheman YB, Nazimah SAH, Amin I, Int. J. Food Sci. Nutr., 60(2), 114 (2009)
  9. Csoka G, Marton S, Zelko R, Otomo N, Antal I, Eur. J. Pharm. Biopharm., 65, 233 (2007)
  10. Neta NS, Teixeira JA, Rodrigues LR, Crit. Rev. Food Sci. Nutr., 55(5), 595 (2015)
  11. Garud SS, Karimi IA, Kraft M, Comput. Chem. Eng., 106, 71 (2017)
  12. Toyota H, Asai T, Oku N, Eur. J. Pharm. Sci., 102, 196 (2017)
  13. Lee SB, Jang HS, Yoo BH, Appl. Chem. Eng., 29(6), 746 (2018)
  14. Han KH, Zuo C, Hong IK, Appl. Chem. Eng., 30(3), 337 (2019)
  15. Kang WL, Xu B, Wang YJ, Li Y, Shan XH, An F, Liu JH, Colloids Surf. A: Physicochem. Eng. Asp., 384(1-3), 555 (2011)
  16. Homayoonfal M, Khodaiyan F, Mousavi M, Food Chem., 174, 649 (2015)
  17. Saeed MO, Azizli K, Isa M, Bashir MJK, J. Water Process Eng., 8, 7 (2015)
  18. Yolmeh M, Najafi MBH, Farhoosh R, Food Chem., 155, 319 (2014)
  19. Katsouli M, Polychniatou V, Tzia C, LWT Food Sci. Technol., 89, 740 (2018)