화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.3, 337-344, June, 2019
금은화와 회화나무꽃으로부터 항산화성분의 추출 : 중심합성계획모델을 이용한 최적화
Extraction of Antioxidants from Lonicera japonica and Sophora japonica L.: Optimization Using Central Composite Design Model
E-mail:
초록
본 연구에서는 금은화와 회화나무꽃으로부터 항산화성분을 추출하는 용매추출공정의 최적화를 위해 반응표면분석법중 중심합성계획모델을 이용하였다. 반응표면분석법의 반응치로는 추출수율과 DPPH 라디칼소거활성을 설정하였고, 독립변수로는 추출시간, 주정/초순수 부피비, 추출온도 등을 설정하였다. 중심합성계획모델로 최적화과정을 수행한 결과 금은화의 경우 최적조건은 추출시간(2.08 h), 주정/초순수의 부피비(41.53 vol.%), 추출온도(55.08 ℃)이었으며, 이때 수율(37.38 wt.%), DPPH 라디칼소거활성(40.37%) 값을 나타내었다. 또한 회화나무꽃의 경우 추출시간(2.13 h), 주정/초순수의 부피비(62.89 vol.%), 추출온도(50.42 ℃)에서 개별 최대값인 수율(35.43 wt.%), DPPH 라디칼소거활성(55.27%) 값을 나타내었다.
In this study, an antioxidant was extracted from Lonicera japonica and Sophora japonica L, which was optimized by using the central composite design (CDD) model of response surface methodology (RSM). The response value of CDC model establishes the extraction yield and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The extraction time, volume ratio of ethanol/ultrapure water, and extraction temperature were selected as quantitative factors. According to the result of CDC, optimal extraction conditions of Lonicera japonica were as follows; the extraction time of 2.08 h, volume ratio of ethanol/ultrapure water of 41.53 vol.%, and extraction temperature of 55.08 ℃. At these conditions the expected results indicated that the yield and DPPH radical scavenging activity were estimated as 37.88 wt% and 40.37%, respectively. On the other hand, optimal extraction conditions of Sophora japonica L. could be found as the extraction time of 2.13 h, volume ratio of ethanol/ultrapure water of 62.89 vol.%, and temperature of 50.42 ℃. Under the conditions, the (possible) maximum values of yield and DPPH radical scavenging activity were found as 35.43 wt% and 55.7%, respectively.
  1. Callender LA, Carroll EC, Bober EA, Henson SM, Ageing Res. Rev., 47, 24 (2018)
  2. Yang ES, Hong RH, Kang SM, Koean J. Microbiol. Biotechnol., 35(4), 316 (2007)
  3. de Magalhaes JP, Passos JF, Mech. Ageing Dev., 170, 2 (2018)
  4. Yang Q, Wang Q, Deng W, Sun C, Wei Q, Adu-Frimpong M, Shi J, Yu J, Xu X, Int. J. Biol. Macromol., 123, 801 (2019)
  5. Shang X, Pan H, Li M, Miao X, Ding H, J. Ethnopharmacol., 138, 1 (2011)
  6. Kong D, Li Y, Bai M, He H, Liang G, Wu H, Ind. Crop. Prod., 96, 16 (2017)
  7. Paynter Q, Konuma A, Dodd SL, Hill RL, Field L, Gourlay AH, Winks CJ, Biol. Control, 105, 56 (2017)
  8. Alberti A, Zelinski AAF, Zardo DM, Demiate IM, Nogueira A, Mafra LI, Food Chem., 149, 151 (2014)
  9. Ohale E, Uzoh CF, Shamsuddeen AA, Chem. Eng. J., 313, 993 (2017)
  10. Lu Y, Foo LY, Food Chem., 68, 81 (2000)
  11. Hamlaoui I, Bencheraiet R, Bensegueni R, Bencharif M, J. Mol. Struct., 1156, 385 (2018)
  12. Zamani M, Delfani AM, Jabbari M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 201, 288 (2018)
  13. Lee SB, Wang X, Hong IK, Appl. Chem. Eng., 29(6), 663 (2018)