화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.3, 345-351, June, 2019
TiO2 기반의 다양한 금속산화물 첨가와 중공사형 흡착제의 비소 흡착 특성
Various Metal Oxide Additions Based on TiO2 and Adsorption Characteristics of Hollow Fiber Adsorbent on Arsenic
E-mail:
초록
본 연구에서는 TiO2를 기반으로 한 중공사형 흡착제를 제조와 다양한 금속산화물 첨가에 따른 비소 흡착 특성을 평가 하였다. 실험 결과 TiO2 중공사형 흡착제가 가장 우수한 비소 흡착 성능을 보였으며, 금속산화물을 첨가한 경우 금속 산화물이 TiO2 표면의 산점을 막음으로 인해 오히려 비소 흡착 성능이 저하되었다. 그러나 장시간 비소 흡착 성능을 비교한 결과 Al2O3를 첨가한 중공사형 흡착제의 비소 흡착 성능이 증진되었다. 또한 비표면적 및 기공 크기가 상대적으로 클수록 비소 흡착 성능이 우수하였으며, 루이스 산점과 브뢴스테드 산점이 풍부하게 존재할수록 흡착에 유리한 사이트가 제공됨을 확인하였다. 이를 통해 기존 파우더 형태의 상용 TiO2를 담체 형태로도 제조하여 소규모 정수처리 시설에 적용이 가능할 것으로 판단된다.
In this study, the hollow fibers from TiO2 and various metal oxides additives were fabricated and characterized in order to remove the arsenic substance from a contaminated water. Experimental results showed the best arsenic adsorption performance from pristine TiO2 hollow fibers. When metal oxides were added, the metal oxides reduced the acid sites on the surface of TiO2 and the arsenic adsorption performance decreased. However, the long term arsenic adsorption performance was enhanced and showed better performance than that of using pristine TiO2 hollow fibers when Al2O3 was added during the hollow fiber fabrication. In addition, the arsenic adsorption performance showed a high dependency on the specific surface area of hollow fibers. It was confirmed that the abundancy of Lewis and Bronsted acid sites provided was favorable for the arsenic adsorption. It was also demonstrated that commercially available TiO2 powders can be an attractive candidate material for manufacturing hollow fibers for a small scale water treatment plant.
  1. Jeon BH, Kim SJ, Lee SH, Jung WS, J. Mine Reclam. Technol., 2(1), 3 (2008)
  2. Fields KA, Chen A, Wang L, Arsenic Removal from Drinking Water by Coagulation/Filtration and Lime-Softening Plants, US EPA (2000).
  3. WHO, World Health Report 2000-Health Systems: Improving Performance, Fifty-third World Health Assembly (WHO) (2000).
  4. Bang SB, Meng X, Bang KW, J. Korean Soc. Environ. Eng., 25(11), 1429 (2003)
  5. Choi SI, Park GL, Ministry of Environment of Korea (2005).
  6. Abdallah EAM, Gagnon GA, J. Environ. Eng. Sci., 8(2), 223 (2013)
  7. Yoo HG, Lee KH, Joo HJ, J. Korean Soc. Water Environ., 31(2), 209 (2015)
  8. Lee DH, Kim SS, J. Korean Soc. Water Environ., 31(6), 632 (2015)
  9. Bankmann MR, Brand R, Enger BH, Ohmer J, Catal. Today, 14(2), 225 (1992)
  10. Choi SH, Cho SP, Lee JY, Hong SH, Hong SC, Hong SI, J. Mol. Catal. A-Chem., 304(1-2), 166 (2009)
  11. Diebold U, Surf. Sci. Rep., 48, 53 (2003)
  12. Shannon RD, Pask JA, J. Am. Ceram. Soc., 48, 391 (1965)
  13. Chung TS, Qin JJ, Gu J, Chem. Eng. Sci., 55(6), 1077 (2000)
  14. Liu F, Hashim NA, Liu YT, Abed MRM, Li K, J. Membr. Sci., 375(1-2), 1 (2011)
  15. Wang DL, Li K, Teo WK, J. Membr. Sci., 163(2), 211 (1999)
  16. Deshmukh SP, Li K, J. Membr. Sci., 150(1), 75 (1998)
  17. Won SH, Lee YC, Korean J. Environ. Health Saf. (EHS) Assess., 5(4), 13 (2007)
  18. Meng X, Bang S, Korfiatis GP, Water Res., 34, 1255 (2000)
  19. Hongshao Z, Stanforth R, Environ. Sci. Technol., 35, 4753 (2001)
  20. Xiaohong G, Juanshan D, Xiaoguang M, Yuankui S, Bo S, Qinghai H, J. Hazard. Mater., 215-216, 1 (2012)
  21. Kim SS, Park KH, Hong SC, Fuel Process. Technol., 108, 47 (2013)
  22. Weber J, Miller C, Reactions and Movement of Organic Chemicals in Soils, pp. 305-334, Madison WI, USA (1989).