화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.89, 183-193, September, 2020
Experimental investigation of the effects of surfactant on the dynamics of formation process of liquid drops
E-mail:
In the present study, the formation of surfactant-laden viscous drops in ambient air is experimentally investigated using a high-speed digital camera. The mixtures of 90%, 92.5%, and 95% glycerol by weight in water containing various concentrations of sodium dodecyl sulfate are chosen as the drop phase fluid. The focus of this work is to investigate the effects of concentration of surfactant dissolved in solutions with different viscosities, on physical and geometrical parameters related to drop formation process, such as the drop elongation, minimum neck thickness, formation time, and the drop volume. The formation of satellite drops and the influence of surfactant concentration on their size are also studied. The obtained results indicate that increasing the surfactant concentration and the viscosity of drop phase fluid, slows down the necking process and causes the drop detachment length to increase. The entire process of drop formation is divided into two stages, and it was found that adding surfactant to the solutions has inverse effects on the duration of these two stages. It was also shown that surfactant addition contributes to an increase in the size of the satellite drop due to generation of Marangoni stresses on the surface of the drop's neck.
  1. Ashgriz N(Ed.), Handbook of Atomization and Sprays: Theory and Applications, Springer Science & Business Media, 2011.
  2. Kong SC, Senecal PK, Reitz RD, Oil Gas Sci. Technol., 54(2), 197 (1999)
  3. Liu H, Altan MC, Appl. Mech. Rev., 55(1), B16 (2002)
  4. Kalliadasis S, Chang HC, J. Fluid Mech., 261, 135 (1994)
  5. Fernando RH, Xing LL, Glass JE, Prog. Org. Coat., 40(1-4), 35 (2000)
  6. Khojasteh D, Kazerooni M, Salarian S, Kamali R, J. Ind. Eng. Chem., 42, 1 (2016)
  7. Tadros TF, Emulsion Science and Technology: A General Introduction, Wiley-VCH, Weinheim, pp.1 2009.
  8. Walstra P, Principles of emulsion formation, The Preparation of Dispersions, Veldhofen, pp.77 1991.
  9. Holtze C, Rowat AC, Agresti J, Hutchison JB, Angile FE, Schmitz CH, et al., Lab Chip, 8(10), 1632 (2008)
  10. Xu JH, Dong PF, Zhao H, Tostado CP, Luo GS, Langmuir, 28(25), 9250 (2012)
  11. Hoath SD(Ed.), Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets, John Wiley & Sons, 2016.
  12. Kommeren S, Coenen MJ, Eggenhuisen TM, Slaats TW, Gorter H, Groen P, Org. Electron., 61, 282 (2018)
  13. Glawdel T, Ren CL, Phys. Rev. E, 86(2), 026308 (2012)
  14. Bazhekov IB, Anderson PD, Meijer HEH, J. Colloid Interface Sci., 298(1), 369 (2006)
  15. Roche M, Aytouna M, Bonn D, Kellay H, Phys. Rev. Lett., 103(26), 264501 (2009)
  16. Roche M, Kellay H, Europhys. Lett., 9(5), 54003 (2011)
  17. Kovalchuk NM, Nowak E, Simmons MJH, Langmuir, 32(20), 5069 (2016)
  18. Ambravaneswaran B, Basaran OA, Phys. Fluids, 11(5), 997 (1999)
  19. Timmermans MLE, Lister JR, J. Fluid Mech., 459, 289 (2002)
  20. Kovalchuk NM, Nowak E, Simmons MJ, Colloids Surf. A: Physicochem. Eng. Asp., 521, 193 (2017)
  21. Liao YC, Franses EI, Basaran OA, Phys. Fluids, 18(2), 022101 (2006)
  22. Ma R, Fu T, Zhang Q, Zhu C, Ma Y, Li HZ, J. Ind. Eng. Chem., 54, 408 (2017)
  23. Papageorgiou DT, Phys. Fluids, 7(7), 1529 (1995)
  24. Shi XD, Brenner MP, Nagel SR, Science, 265(5169), 219 (1994)
  25. Dinic J, Sharma V, Phys. Fluids, 31(2), 021211 (2019)
  26. Craster RV, Matar OK, Papageorgiou DT, Phys. Fluids, 14(4), 1364 (2002)
  27. Kovalchuk NM, Jenkinson H, Miller R, Simmons MJH, J. Colloid Interface Sci., 516, 182 (2018)
  28. Henderson DM, Pritchard WG, Smolka LB, Phys. Fluids, 9(11), 3188 (1997)
  29. Wilkes ED, Phillips SD, Basaran OA, Phys. Fluids, 11(12), 3577 (1999)
  30. Zhang X, Basaran OA, Phys. Fluids, 7(6), 1184 (1995)
  31. Liao YC, Subramani HJ, Franses EI, Basaran OA, Langmuir, 20(23), 9926 (2004)
  32. Aminzadeh M, Maleki A, Firoozabadi B, Afshin H, Sci. Iran., 19(5), 1265 (2012)
  33. Rao EN, Kumar R, Kuloor NR, Chem. Eng. Sci., 21(10), 867 (1966)
  34. Scheele GF, Meister BJ, AIChE J., 14(1), 9 (1968)
  35. Heertjes PM, De Nie LH, De Vries HJ, Chem. Eng. Sci., 26(3), 441 (1971)
  36. Zhang DF, Stone HA, Phys. Fluids, 9(8), 2234 (1997)
  37. Zhang XG, J. Colloid Interface Sci., 212(1), 107 (1999)
  38. Ambravaneswaran B, Wilkes ED, Basaran OA, Phys. Fluids, 14(8), 2606 (2002)
  39. Xu Q, Basaran OA, Phys. Fluids, 19(10), 102111 (2007)
  40. Basaran OA, AIChE J., 48(9), 1842 (2002)
  41. Cramer C, Fischer P, Windhab EJ, Chem. Eng. Sci., 59(15), 3045 (2004)
  42. Xue ZJ, Corvalan CA, Dravid V, Sojka PE, Chem. Eng. Sci., 63(7), 1842 (2008)
  43. Dechelette A, Campanella O, Corvalan C, Sojka PE, Chem. Eng. Sci., 66(24), 6367 (2011)
  44. Ruiz CC, Diaz-Lopez L, Aguiar J, J. Dispersion Sci. Technol., 29(2), 266 (2008)
  45. Abdel-Rahem RA, J. Dispersion Sci. Technol., 34(7), 932 (2013)
  46. Khan H, Seddon JM, Law RV, Brooks NJ, Robles E, Cabral JT, Ces O, J. Colloid Interface Sci., 538, 75 (2019)
  47. Wang W, Ngan KH, Gong J, Angeli P, Colloids Surf. A: Physicochem. Eng. Asp., 334(1-3), 197 (2009)
  48. Aytouna M, Paredes J, Shahidzadeh-Bonn N, Moulinet S, Wagner C, Amarouchene Y, Eggers J, Bonn D, Phys. Rev. Lett., 110(3), 034501 (2013)
  49. Salehi MS, Esfidani MT, Afshin H, Firoozabadi B, Exp. Therm. Fluid Sci., 94, 148 (2018)
  50. Stone HA, Bentley BJ, Leal LG, J. Fluid Mech., 173, 131 (1986)