화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.90, 333-340, October, 2020
Black phosphorus-based smart electrorheological fluid with tailored phase transition and exfoliation
E-mail:
The effect of phase transition and exfoliation time on electro-responsive behavior of black phosphorus is identified by introducing black phosphorus and phosphorene to electrorheological fluid. Black phosphorus is successfully fabricated by mechanical milling for phase transition from red phosphorus, and phosphorene is fabricated by ultrasonication of the prepared black phosphorus. The morphology, degree of phase transition, and electrical conductivity of black phosphorus and phosphorene are precisely controlled by modifying the duration of both milling and delamination. It can be corroborated from a comprehensive study that the electrical conductivity as well as morphology affect the electroresponsive behaviors of black phosphorus and phosphorene. To the best of our knowledge, this is the first report on the meticulous control of phase transition and the potential of both black phosphorus and phosphorene as candidate materials for lectrorheological fluids. This study may provide understanding of the electro-responsive characteristics of black phosphorus and phosphorene, broadening the perspective of electro-responsive smart fluids.
  1. Eyckens DJ, Arnold CL, Randall JD, Stojcevski F, Hendlmeier A, et al., ACS Appl. Mater. Interfaces, 11, 41617 (2019)
  2. Tan C, Arshadi M, Lee MC, Godec M, Azizi M, Yan B, Eskandarloo H, Deisenroth TW, Darji RH, Pho TV, Abbaspourrad A, ACS Nano, 13, 9016 (2019)
  3. Zhang YL, Chen KX, Li YS, Lan J, Yan B, Shi LY, Ran R, ACS Appl. Mater. Interfaces, 11, 47350 (2019)
  4. Dong Y, Bazrafshan A, Pokutta A, Sulejmani F, Sun W, Combs JD, Clarke KC, Salaita K, ACS Nano, 13, 9918 (2019)
  5. Hong JY, Jang J, Soft Matter, 8, 7348 (2012)
  6. Wen WJ, Huang XX, Yang SH, Lu KQ, Sheng P, Nat. Mater., 2(11), 727 (2003)
  7. Lee S, Kim YK, Hong FY, Jang J, ACS Appl. Mater. Interfaces, 8, 24221 (2016)
  8. Yoon CM, Ryu J, Yun J, Kim YK, Jang J, ACS Appl. Mater. Interfaces, 10, 6570 (2018)
  9. Noh J, Yoon CM, Jang J, J. Colloid Interface Sci., 470, 237 (2016)
  10. Lee S, Lee J, Hwang SH, Yun J, Jang J, ACS Nano, 9, 4939 (2015)
  11. Manaster BJ, Yearbook of Diagnostic Radiology, pp.70 (2009).
  12. Kim HY, Choi HJ, RSC Adv., 4, 28511 (2014)
  13. Hao T, Adv. Colloid Interface Sci., 97, 1 (2002)
  14. Abdelhalim MAK, Mady MM, Ghannam MM, Lipids Health Dis., 10, 208 (2011)
  15. Yin J, Wang X, Chang R, Zhao X, Soft Matter, 8, 294 (2012)
  16. Yin J, Chang R, Kai Y, Zhao X, Soft Matter, 9, 3910 (2013)
  17. Yin J, Xia X, Xiang L, Zhao X, J. Mater. Chem., 20, 7096 (2010)
  18. Wilson MR, Duncan PD, Dennison M, Masters AJ, Soft Matter, 8, 3348 (2012)
  19. Zhang H, ACS Nano, 9, 9451 (2015)
  20. Kang J, Sangwan VK, Wood JD, Hersam MC, Accounts Chem. Res., 50, 943 (2017)
  21. Bonaccorso F, Bartolotta A, Coleman JN, Backes C, Adv. Mater., 28(29), 6136 (2016)
  22. de Sousa DJP, de Castro LV, da Costa DR, Pereira JM, Low T, Phys. Rev. B, 96, 155427 (2017)
  23. Ansari SA, Ansari MS, Cho MH, Phys. Chem. Chem. Phys., 18, 3921 (2016)
  24. Carvalho A, Wang M, Zhu X, Rodin AS, Su H, Neto AHC, Nat. Rev. Cancer, 1, 16061 (2016)
  25. Castellanos-Gomez A, Vicarelli L, Prada E, Island JO, Narasimha-Acharya KL, et al., 2D Mater., 1, 025001 (2014)
  26. Endo S, Akahama Y, Terada S, Narita S, Jpn. J. Appl. Phys., 21, L482 (1982)
  27. Woomer AH, Farnsworth TW, Hu J, Wells RA, Donley CL, Warren SC, ACS Nano, 9, 8869 (2015)
  28. Hanlon D, Backes C, Doherty E, Cucinotta CS, Berner NC, Boland C, Lee K, et al., Nat. Commun., 6, 8563 (2015)
  29. Aldave SH, Yogeesh MN, Zhu W, Kim J, Sonde SS, Nayak AP, Akinwande D, 2D Mater., 3, 014007 (2016)
  30. Wu S, He F, Xie G, Bian Z, Luo J, Wen S, Nano Lett., 18, 5618 (2018)
  31. Wu S, He F, Xie G, Bian Z, Ren Y, Liu X, Yang H, Guo D, Zhang L, Wen S, Luo J, ACS Appl. Mater. Interfaces, 12, 7717 (2020)
  32. Shin KY, Lee S, Hong S, Jang J, ACS Appl. Mater. Interfaces, 6, 5531 (2014)
  33. Lee S, Kim YK, Jang J, Nanoscale, 8, 17551 (2016)
  34. Friend JN, A_Text-Book_of_Inorganic_Chemistry_Vol-VI_Part_II, Charles Griffin and Co, London, 1934.
  35. Brent JR, Savjani N, Lewis EA, Haigh SJ, Lewis DJ, O’Brien P, Chem. Commun., 50, 13338 (2014)
  36. Xu ZL, Lin S, Onofrio N, Zhou L, Shi F, Lu W, Kang K, Zhang Q, Lau SP, Nat. Commun., 9, 4164 (2018)
  37. Wang YL, Tian LY, Yao ZH, Li F, Li S, Ye SH, Electrochim. Acta, 163, 71 (2015)
  38. Lee JY, Lin YJ, Synth. Met., 212, 180 (2016)
  39. Pfitzner A, Angew. Chem.-Int. Edit., 45, 699 (2006)
  40. Wang L, He X, Li J, Sun W, Gao J, Guo J, Jiang C, Angew. Chem.-Int. Edit., 51, 9034 (2012)
  41. Fasol G, Cardona M, Honle W, von Schnering HG, Solid State Commun., 52, 307 (1984)
  42. Phaneuf-L’Heureux AL, Favron A, Germain JF, Lavoie P, Desjardins P, Leonelli R, Martel R, Francoeur S, Nano Lett., 16, 7761 (2016)
  43. Extance P, Elliott SR, Philos. Mag. B, 43, 469 (2006)
  44. Nakajima T, Groult H, Advanced Fluoride-Based Materials for Energy Conversion 1st Edition, Elsevier, 2015.
  45. Lee S, Noh J, Hong S, Kim YK Jang J, Chem. Mater., 28, 2624 (2016)
  46. Choi HJ, Kim JW, Noh MH, Lee DC, Suh MS, Shin MJ, Jhon MS, J. Mater. Sci. Lett., 18(18), 1505 (1999)
  47. Guzel S, Erol O, Unal HI, J. Appl. Polym. Sci., 124, 4935 (2011)