Journal of Industrial and Engineering Chemistry, Vol.94, 195-204, February, 2021
Improving the performance of a photonic PCR system using TiO2 nanoparticles
E-mail:
Nucleic acid amplification using polymerase chain reaction (PCR) method has been widely used in different fields such as agricultural science, medicine, pathogen identification, and forensics to name a few. Today, it seems inevitable to have a robust, simple PCR system for diagnostics at the point-of-care (POC) level. Many photonic PCR systems have been proposed in the literature that benefit from plasmonic photothermal heating to achieve the common PCR thermal cycling. However, non-homogeneous temperature distribution is a challenge in some of them. In the present work, to achieve more efficient gene amplification, the effect of adding TiO2 nanoparticles has been investigated in a photonic PCR benefiting from plasmonic photothermal heating. The system enjoys higher heating and cooling rates than those of conventional PCR systems while having much lower energy consumption. The average heating and cooling rates are 4.44 °C/s and 2.65 °C/s, respectively. The system demonstrates acceptable temperature stability and accuracy with negligible deviation from the set points. Furthermore, the system is capable of amplifying eight gene samples simultaneously which makes it a viable choice for POC diagnostics. A part of the Alcohol Oxidase gene has been amplified using the plasmonic thermal cycler. It is demonstrated that adding TiO2 nanoparticles with a proper concentration to the sample provides a more specific band that can be ascribed to more homogeneous temperature distribution owing to enhanced thermal conductivity. The best amplification of the target gene has been achieved with a concentration of 0.4 nM of nanoparticles.
Keywords:Microfluidics;Polymerase chain reaction (PCR);Thermal cycling;Point-of-care (POC) diagnostics;DNA amplification;TiO2 nanoparticles
- Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M, Crit. Care Med., 34(6) (2006)
- Gaieski DF, Mikkelsen ME, Band RA, Pines JM, Massone R, Furia FF, Shofer FS, Goyal M, Crit. Care Med., 38(4), 1045 (2010)
- Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH, Chest, 122(1), 262 (2002)
- Gacouin A, Le Tulzo Y, Lavoue S, Camus C, Hoff J, Bassen R, Arvieux C, Heurtin C, Thomas R, Intensive Care Med., 28(6), 686 (2002)
- Melzer M, Petersen I, J. Infect., 55(3), 254 (2007)
- Baker M, Nat. Methods., 7(5), 351 (2010)
- Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C, Methods, 25(4), 386 (2001)
- Zhang C, Xing D, Nucleic Acids Res., 35(13), 4223 (2007)
- Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D, Food Microbiol., 28(5), 848 (2011)
- Walker NJ, J. Biochem. Mol. Toxicol., 15, 121 (2001)
- Horsman KM, Bienvenue JM, Blasier KR, Landers JP, J. Forensic Sci., 52(4), 784 (2007)
- Naghdloo A, Ghazimirsaeed E, Shamloo A, Sens. Actuators B-Chem., 283, 831 (2019)
- Mahjoob S, Vafai K, Beer NR, Int. J. Heat Mass Transf., 51(9-10), 2109 (2008)
- Shu JI, Baysal O, Qian SZ, Qiu XB, Wang FH, Int. J. Heat Mass Transf., 133, 1230 (2019)
- Chiu DT, deMello AJ, Di Carlo D, Doyle PS, Hansen C, Maceiczyk RM, Wootton RCR, Chem, 2(2), 201 (2017)
- Peng J, Fang CF, Ren S, Pan JJ, Jia YD, Shu ZQ, Gao DY, Int. J. Heat Mass Transf., 130, 660 (2019)
- Madadelahi M, Shamloo A, Int. J. Multiph. Flow, 97, 186 (2017)
- Aboutalebi M, Bijarchi MA, Shafii MB, Hannani BK, J. Magn. Magn. Mater., 447, 139 (2018)
- Shamloo A, Besanjideh M, IEEE Trans. Biomed. Eng., 67, 372 (2020)
- Chen JJ, Sheu TS, Wang YJ, Defect Diffus. Forum., 366, 17 (2016)
- Ragsdale V, Li H, Sant H, Ameel T, Gale BK, Biomed. Microdevices, 18, 62 (2016)
- M. Madadelahi, E. Ghazimirsaeed, A. Shamloo, Anal. Chim. Acta, 1068, 28 (2019)
- Lee SH, Song J, Cho B, Hong SG, Hoxha O, Kang T, Kim D, Lee LP, Biosens. Bioelectron., 126, 725 (2019)
- Kim H, Vishniakou S, Faris GW, Lab Chip., 9(9), 1230 (2009)
- Terazono H, Hattori A, Takei H, Takeda K, Yasuda K, Jpn. J. Appl. Phys., 47, 5212 (2008)
- Roche PJR, Beitel LR, Khan R, Lumbroso R, Najih M, Cheung MCK, Thiemann J, Veerasubramanian V, Trifiro M, Chodavarapu VP, Kirk AG, Analyst, 137(19), 4475 (2012)
- Son JH, Cho B, Hong S, Lee SH, Hoxha O, Haack AJ, Lee LP, Light Sci. Appl., 4(7) (2015)
- Son JH, Hong S, Haack AJ, Gustafson L, Song M, Hoxha O, Lee LP, Rapid Optical Cavity P.C.R., pp.167 (2016).
- Li TJ, Chang CM, Chang PY, Chuang YC, Huang CC, Su WC, Bin Shieh D, NPG Asia Mater., 8(6) (2016)
- Lee SH, Park SM, Kim BN, Kwon OS, Rho WY, Jun BH, Biosens. Bioelectron., 141, 11148 (2019)
- Yang JM, Wu HJ, Wang MR, Liang YY, Int. J. Heat Mass Transf., 117, 729 (2018)
- Murshed SMS, Leong KC, Yang C, Int. J. Therm. Sci., 44(4), 367 (2005)
- Abdul Khaliq R, Sonawane PJ, Sasi BK, Sahu BS, Pradeep T, Das SK, Mahapatra NR, Nanotechnology, 21(25), 255704 (2010)
- Kim HS, Lee SH, Choi I, Analyst, 144(8), 2820 (2019)
- Bamshad A, Nikfarjam A, Khaleghi H, J. Micromech. Microeng., 26(6) (2016)
- Zhu X, Liu G, Guo Y, Tian Y, Microsyst. Technol., 13(3-4), 403 (2007)
- Yu H, Chong ZZ, Tor SB, Liu E, Loh NH, RSC Adv., 5(11), 8377 (2015)
- Sun Y, Kwok YC, Nguyen NT, J. Micromech. Microeng., 16(8), 1681 (2006)
- Johnson PB, Christy RW, Phys. Rev. B, 6(12), 4370 (1972)
- Webb JA, Bardhan R, Nanoscale, 6(5), 2502 (2014)
- Tinkham M, Ferrell RA, Determination of the superconducting skin depth, pp.33 (1959).
- Sang FM, Li X, Liu J, Chin. J. Anal. Chem., 45(11), 1745 (2017)
- Wan W, Yeow JTW, Van Dyke MI, 2009 9th IEEE Conf. Nanotechnol., 458 (2009).