화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.94, 205-216, February, 2021
SF6 abatement in a packed bed plasma reactor: Role of zirconia size and optimization using RSM
E-mail:,
This work describes plasma destruction of SF6 in a zirconia (ZrO2) packed bed plasma reactor (PBR). Electric signals, equivalent parameters, emission spectra and degradation results have been utilized to evaluate the influence of ZrO2 size on PBR discharge characteristics and SF6 degradation. The results present that the size of ZrO2 has a significant impact on PBR discharge characteristics due to its influence on physical parameters. Moreover, bigger ZrO2 beads packing shows a better performance in SF6 degradation because of longer gas residence time. In addition, the key operating parameters including flowrate, SF6 concentration, oxygen concentration, and water vapor concentration were optimized by response surface methodology (RSM) with Box-Behnken design (BBD). The proposed optimization model shows satisfactory correlation between the predicted and actual results. For energy yield (EY), the mutual effect of flowrate, SF6 concentration and water vapor concentration was significant. For SO2F2 selectivity, the mutual effect of SF6 concentration and water vapor concentration was significant. The optimum SF6 abatement was predicted from RSM as 14.64 g/kWh and 14.42% for EY and SO2F2 selectivity at flowrate of 200 mL/min, SF6 concentration of 3%, oxygen concentration of 0.83% and water vapor concentration of 1.89%.
  1. Rabie M, Franck CM, Environ. Sci. Technol., 52(2), 369 (2018)
  2. Zhang XX, et al., Crit. Rev. Environ. Sci. Technol., 47(18), 1763 (2017)
  3. Li YL, et al., High Voltage, 5(1), 41 (2019)
  4. Zhang Y, et al., IEEE Access, 7, 73954 (2019)
  5. Reilly J, et al., Nature, 401(6753), 549 (1999)
  6. Li Y, et al., Corrosion Sci., 153, 32 (2019)
  7. Li Y, Zhang XX, Zhang J, Xiao S, Xie BJ, Chen DC, Gao YD, Tang J, J. Hazard. Mater., 368, 653 (2019)
  8. Li Y, Zhang XX, Tian SS, Xiao S, Li YL, Chen DC, Chem. Eng. J., 360, 929 (2019)
  9. Lee HM, et al., J. Air Waste Manage. Assoc., 54(8), 960 (2004)
  10. Chen HL, et al., IEEE Trans. Plasma Sci., 36(2), 509 (2008)
  11. Radoiu M, Hussain S, J. Hazard. Mater., 164(1), 39 (2009)
  12. Shih ML, Lee WJ, Chen CY, Ind. Eng. Chem. Res., 42(13), 2906 (2003)
  13. Kogelschatz U, Plasma Chem. Plasma Process., 23(1), 1 (2003)
  14. Wang L, Liu SY, Xu C, Tu X, Green Chem., (18), 5658 (2016).
  15. Mei D, et al., Plasma Sources Sci. Technol., 24(1), 015011 (2015)
  16. Butterworth T, Elder R, Allen R, Chem. Eng. J., 293, 55 (2016)
  17. Ozkan A, et al., J. Phys. D-Appl. Phys., 50(8), 084004 (2017)
  18. Chang CL, Lin TS, Plasma Chem. Plasma Process., 25(3), 227 (2005)
  19. Jiang N, Guo LJ, Qiu C, Zhang Y, Shang KF, Lu N, Li J, Wu Y, Chem. Eng. J., 350, 12 (2018)
  20. Jiang N, Qiu C, Guo LJ, Shang KF, Lu N, Li J, Zhang Y, Wu Y, J. Hazard. Mater., 369, 611 (2019)
  21. Xiao HY, et al., IEEE Trans. Dielectr. Electr. Insul., 24(3), 1617 (2017)
  22. Zhuang Q, Clements B, McFarlan A, Fasoyinu Y, Can. J. Chem. Eng., 92(1), 32 (2014)
  23. Zhang XX, et al., IEEE Access, 6, 72748 (2018)
  24. Zhang XX, Cui ZL, Li YL, Xiao HY, Li Y, Tang J, Xiao S, J. Hazard. Mater., 360, 341 (2018)
  25. Van Laer K, Bogaerts A, Energy Technol, 3(10), 1038 (2015)
  26. Cui ZL, et al., Plasma Chem. Plasma Process., 40(1), 43 (2019)
  27. Cui ZL, et al., J. Phys. D-Appl. Phys., 53(2), 025205 (2020)
  28. Uytdenhouwen Y, Van Alphen S, Michielsen I, Meynen V, Cool P, Bogaerts A, Chem. Eng. J., 348, 557 (2018)
  29. Van Laer K, Bogaerts A, Plasma Sources Sci. Technol., 26(8), 085007 (2017)
  30. Jiang N, et al., Appl. Catal. B: Environ., 259, 118061 (2019)
  31. Mei DH, et al., Plasma Processes Polym., 13(5), 544 (2016)
  32. Sidik SM, Triwahyono S, Jalil AA, Majid ZA, Salamun N, Talib NB, Abdullah TAT, Chem. Eng. J., 295, 1 (2016)
  33. Zhang XX, et al., Aip Adv., 6(11), 115055 (2016)
  34. Tu X, et al., J. Phys. D-Appl. Phys., 44(27), 274007 (2011)
  35. Zhang XX, et al., IEEE Trans. Plasma Sci., 46(3), 563 (2018)
  36. Hagelaar GJM, Pitchford LC, Plasma Sources Sci. Technol., 14(4), 722 (2005)
  37. Zhou A, et al., Catalysts, 8(7), 256 (2018)
  38. Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers F, Meynen V, Bogaerts A, Chem. Eng. J., 326, 477 (2017)
  39. Tian Y, et al., Rsc Adv., 9(60), 34827 (2019)
  40. Zhang XX, et al., Plasma Sci. Technol., 22(5), 055502 (2020)