Journal of Industrial and Engineering Chemistry, Vol.94, 302-308, February, 2021
Simultaneous hydrogen production and struvite recovery within a microbial reverse-electrodialysis electrolysis cell
E-mail:
In this research, a novel Microbial reverse-electrodialysis electrolysis struvite-precipitation cell (MRESC) was developed for energy recovery through struvite (MgNH4PO4·6H2O) crystallization and hydrogen production concurrently in a single process without any electrical-grid energy consumption. This hybrid system can effectively transfer the salinity gradient energy to electrical energy as a driving force to produce hydrogen gas coupled with struvite recovery and organic wastewater degradation. A MRESC containing 10 pairs of RED cells, supplied solutions typical of high concentration (600 mM NaCl) and low concentration (12 mM NaCl) at 1.0 mL/min, was operated in the fed-batch mode. The rates of hydrogen production and struvite crystallization were determined to be 0.71 m3-H2/m3-Van/d and 7.62 g/m2/h, respectively. The gas produced was >92% H2. The Coulombic efficiency was close to or above 100% with a COD removal of 84 ± 6%, and an overall energy efficiency of 28%. The morphology and structure of the main component of accumulated crystal at the cathode were verified by a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction. These results showed that the MRESC system could be used as an effective bioelectrochemical method for energy recovery in the form of pure hydrogen gas and struvite simultaneously.
Keywords:Microbial reverse-electrodialysis;electrolysis cell;Resource recovery;Struvite recovery;Energy recovery;Renewable energy
- Massey MS, Davis JG, Ippolito JA, Sheffield RE, Agron. J., 101, 323 (2009)
- US Geological Survey. Phosphate Rock (2005).
- Gilbert N, Nature, 461(8), 716 (2009)
- Michalowski T, Pietrzyk A, Talanta, 68, 594 (2006)
- Doyle JD, Parsons SA, Water Res., 36, 3925 (2002)
- Jing HP, Li Y, Wang X, Zhao J, Xia S, Environ. Sci. Water Res. Technol., 5, 931 (2019)
- Shaddel S, Ucar S, Andreassen JP, Osterus SW, Water Sci. Technol., 79(9), 1777 (2019)
- Cusick RD, Logan BE, Bioresour. Technol., 107, 110 (2012)
- Cusick RD, Ullery ML, Dempsey BA, Logan BE, Water Res., 54, 29 (2014)
- Almatouq A, Babatunde AO, Int. J. Environ. Res. Public Health, 13(4), 375 (2016)
- Almatouq A, Babatunde AO, Bioresour. Technol., 237, 192 (2017)
- Lei Y, Du M, Kuntke P, Saakes M, van der Weijden R, Buisman CJN, ACS Sustainable Chem. Eng. (7), 8860 (2019).
- Jia YH, Ryu JH, Kim CH, Lee WK, Tran TVT, Lee HL, Zhang RH, Ahn DH, J. Ind. Eng. Chem., 18(2), 715 (2012)
- Kadier A, Simayi Y, Kalil MS, Abdeshahian P, Hamid AA, Renew. Energy, 71, 466 (2014)
- Ling CY, Cao H, Chen Y, Han M, Birgersson E, Appl. Energy, 164, 670 (2016)
- Khan MZ, Nizami AS, Rehan M, Ouda OKM, Sultana S, Ismail IM, Shahzad K, Appl. Energy, 185, 410 (2017)
- Kim Y, Logan BE, PANS, 108(39), 16176 (2011)
- Watson VJ, Hatzell M, Logan BE, Bioresour. Technol., 195, 51 (2015)
- Song YH, Hidayat S, Kim HK, Park JY, Bioresour. Technol., 210, 56 (2016)
- Hidayat S, Song YH, Park JY, Bioresour. Technol., 240, 77 (2017)
- Call D, Logan BE, Environ. Sci. Technol., 42, 3401 (2008)
- Song YH, An BM, Shin JW, Park JY, Int. Biodeterior. Biodegrad., 102, 392 (2015)
- Luo X, Nam JY, Zhang F, Zhang XY, Liang P, Huang X, Logan BE, Bioresour. Technol., 140, 399 (2013)
- Nam JJY, Cusick RD, Kim Y, Logan BE, Environ. Sci. Technol., 46, 5240 (2012)
- Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS, Int. J. Hydrog. Energy, 35(24), 13379 (2010)
- He Z, Hyang Y, Manohar AK, Mansfeld F, Bioelectrochemistry, 74, 78 (2008)
- Zhu XP, He WH, Logan BE, J. Membr. Sci., 486, 215 (2015)
- Tao QQ, Zhou SQ, Luo JJ, Yuan JP, Desalination, 365, 92 (2015)
- Zou S, Qin M, Moreau Y, He Z, J. Clean Prod., 154, 16 (2017)
- Sciarria TP, Vacca G, Tambone F, Trombino L, Adani F, J. Clean Prod., 208, 1022 (2019)
- Ichihashi O, Hirooka K, Bioresour. Technol., 114, 303 (2012)