Applied Chemistry for Engineering, Vol.32, No.1, 15-19, February, 2021
타이로신이 풍부한 펩타이드를 사용한 금 나노입자의 손쉬운 합성과 4-니트로페놀의 촉매 환원 응용
Facile Synthesis of Gold Nanoparticles Using Tyrosine-Rich Peptide and Its Applications to Catalytic Reduction of 4-Nitrophenol
E-mail:
초록
본 연구에서는 타이로신이 풍부한 펩타이드, Tyr-Tyr-Gly-Tyr-Tyr (YYGYY)를 환원제 및 안정화제로 사용하여 구형의 금 나노 입자의 간단한 합성 방법을 연구하였다. 펩타이드로 둘러싸인 구형의 다결정 금 나노 입자는 UV 조사 하에서 펩타이드 및 금속 전구체의 농도를 조절하여 3~15 nm 크기로 합성되었다. 합성된 금 나노 입자의 특성을 확인하기 위하여 투과 전자 현미경(TEM), 자외선-가시광선 분광광도계(UV-Vis spectroscopy), 주사 투과 전자 현미경 및 에너지 분산X선 분광법(STEM-EDS), 푸리에 변환 적외선 분광법(FT-IR), X선 회절 분석법(XRD)을 사용하여 분석하였다. 또한, 합성된 금 나노입자는 4-니트로페놀의 환원 반응을 통해 7.3 × 10-3 s-1의 반응속도 상수를 갖는 촉매 활성을 확인하였다.
In this study, we studied a facile method for the synthesis of stable and nearly spherical gold nanoparticles using a tyrosine-rich peptide, Tyr-Tyr-Gly-Tyr-Tyr (YYGYY), as both the reducing and capping agent. The peptide coated spherical and polycrystalline gold nanoparticles with diameters from 3 to 15 nm were successfully synthesized by varying the concentration of the peptide and metal precursor under UV irradiation. The nanoparticles were then characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). Furthermore, the catalytic activity of gold nanoparticles was confirmed by the reduction of 4-nitrophenol to 4-aminophenol, in which the catalytic reaction rate constant was 7.3 × 10-3 s-1.
- Yeh YC, Creran B, Rotello VM, Nanoscale, 4, 1871 (2012)
- Ma X, He S, Qiu B, Luo F, Guo L, Lin Z, ACS Sens., 4, 782 (2019)
- Haruta M, Date M, Appl. Catal. A: Gen., 222(1-2), 427 (2001)
- Turkevich J, Stevenson PC, Hillier J, Discuss. Faraday Soc., 11, 55 (1951)
- Lee KG, Hong J, Wang KW, Heo NS, Kim DH, Lee SY, Park TJ, Park TJ, ACS Nano, 6, 6998 (2012)
- Zong J, Cobb SL, Cameron NR, Biomater. Sci., 5, 872 (2017)
- Zhao P, Feng X, Huang D, Yang G, Astruc D, Coord. Chem. Rev., 287, 114 (2015)
- Saha A, Adamcik J, Bolisetty S, Handschin S, Mezzenga R, Angew. Chem.-Int. Edit., 27, 5498 (2015)
- Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M, Langmuir, 20(18), 7825 (2004)
- Xie J, Lee JY, Wang DI, Ting YP, ACS Nano, 1, 429 (2007)
- Si S, Bhattacharjee RR, Banerjee A, Mandal TK, Chem. Eur. J., 12, 1256 (2006)
- Min KI, Kim DH, Lee HJ, Lin L, Kim DP, Angew. Chem.-Int. Edit., 130, 5732 (2018)
- Paribok V, Kim YO, Choi SK, Jung GY, Lee J, Nam KT, Agabekov VE, Lee YS, ACS Omega, 3, 3901 (2018)
- Joschek HI, Miller SI, J. Am. Chem. Soc., 88, 3273 (1966)
- Deokar GK, Ingale AG, RSC Adv., 6, 74620 (2016)
- Burt JL, Gutierrez-Wing C, Miki-Yoshida M, Jose-Yacaman M, Langmuir, 20(26), 11778 (2004)
- Berthomieu C, Hienerwadel R, Biochim. Biophys. Acta-Bioenerg., 1707, 51 (2005)
- Serizawa T, Hirai Y, Aizawa M, Langmuir, 25(20), 12229 (2009)
- Seo YS, Ahn EY, Park J, Kim TY, Hong JE, Kim K, Park Y, Park Y, Nanoscale Res. Lett., 12, 7 (2017)
- Choi Y, Choi MJ, Cha SH, Kim YS, Cho S, Park Y, Nanoscale Res. Lett., 9, 103 (2014)
- Suchomel P, Kvitek L, Prucek R, Panacek A, Halder A, Vajda S, Zboril R, Sci. Rep., 8, 4589 (2018)