화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.1, 15-19, February, 2021
타이로신이 풍부한 펩타이드를 사용한 금 나노입자의 손쉬운 합성과 4-니트로페놀의 촉매 환원 응용
Facile Synthesis of Gold Nanoparticles Using Tyrosine-Rich Peptide and Its Applications to Catalytic Reduction of 4-Nitrophenol
E-mail:
초록
본 연구에서는 타이로신이 풍부한 펩타이드, Tyr-Tyr-Gly-Tyr-Tyr (YYGYY)를 환원제 및 안정화제로 사용하여 구형의 금 나노 입자의 간단한 합성 방법을 연구하였다. 펩타이드로 둘러싸인 구형의 다결정 금 나노 입자는 UV 조사 하에서 펩타이드 및 금속 전구체의 농도를 조절하여 3~15 nm 크기로 합성되었다. 합성된 금 나노 입자의 특성을 확인하기 위하여 투과 전자 현미경(TEM), 자외선-가시광선 분광광도계(UV-Vis spectroscopy), 주사 투과 전자 현미경 및 에너지 분산X선 분광법(STEM-EDS), 푸리에 변환 적외선 분광법(FT-IR), X선 회절 분석법(XRD)을 사용하여 분석하였다. 또한, 합성된 금 나노입자는 4-니트로페놀의 환원 반응을 통해 7.3 × 10-3 s-1의 반응속도 상수를 갖는 촉매 활성을 확인하였다.
In this study, we studied a facile method for the synthesis of stable and nearly spherical gold nanoparticles using a tyrosine-rich peptide, Tyr-Tyr-Gly-Tyr-Tyr (YYGYY), as both the reducing and capping agent. The peptide coated spherical and polycrystalline gold nanoparticles with diameters from 3 to 15 nm were successfully synthesized by varying the concentration of the peptide and metal precursor under UV irradiation. The nanoparticles were then characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). Furthermore, the catalytic activity of gold nanoparticles was confirmed by the reduction of 4-nitrophenol to 4-aminophenol, in which the catalytic reaction rate constant was 7.3 × 10-3 s-1.
  1. Yeh YC, Creran B, Rotello VM, Nanoscale, 4, 1871 (2012)
  2. Ma X, He S, Qiu B, Luo F, Guo L, Lin Z, ACS Sens., 4, 782 (2019)
  3. Haruta M, Date M, Appl. Catal. A: Gen., 222(1-2), 427 (2001)
  4. Turkevich J, Stevenson PC, Hillier J, Discuss. Faraday Soc., 11, 55 (1951)
  5. Lee KG, Hong J, Wang KW, Heo NS, Kim DH, Lee SY, Park TJ, Park TJ, ACS Nano, 6, 6998 (2012)
  6. Zong J, Cobb SL, Cameron NR, Biomater. Sci., 5, 872 (2017)
  7. Zhao P, Feng X, Huang D, Yang G, Astruc D, Coord. Chem. Rev., 287, 114 (2015)
  8. Saha A, Adamcik J, Bolisetty S, Handschin S, Mezzenga R, Angew. Chem.-Int. Edit., 27, 5498 (2015)
  9. Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M, Langmuir, 20(18), 7825 (2004)
  10. Xie J, Lee JY, Wang DI, Ting YP, ACS Nano, 1, 429 (2007)
  11. Si S, Bhattacharjee RR, Banerjee A, Mandal TK, Chem. Eur. J., 12, 1256 (2006)
  12. Min KI, Kim DH, Lee HJ, Lin L, Kim DP, Angew. Chem.-Int. Edit., 130, 5732 (2018)
  13. Paribok V, Kim YO, Choi SK, Jung GY, Lee J, Nam KT, Agabekov VE, Lee YS, ACS Omega, 3, 3901 (2018)
  14. Joschek HI, Miller SI, J. Am. Chem. Soc., 88, 3273 (1966)
  15. Deokar GK, Ingale AG, RSC Adv., 6, 74620 (2016)
  16. Burt JL, Gutierrez-Wing C, Miki-Yoshida M, Jose-Yacaman M, Langmuir, 20(26), 11778 (2004)
  17. Berthomieu C, Hienerwadel R, Biochim. Biophys. Acta-Bioenerg., 1707, 51 (2005)
  18. Serizawa T, Hirai Y, Aizawa M, Langmuir, 25(20), 12229 (2009)
  19. Seo YS, Ahn EY, Park J, Kim TY, Hong JE, Kim K, Park Y, Park Y, Nanoscale Res. Lett., 12, 7 (2017)
  20. Choi Y, Choi MJ, Cha SH, Kim YS, Cho S, Park Y, Nanoscale Res. Lett., 9, 103 (2014)
  21. Suchomel P, Kvitek L, Prucek R, Panacek A, Halder A, Vajda S, Zboril R, Sci. Rep., 8, 4589 (2018)