화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.1, 35-41, February, 2021
Sb 첨가에 따른 VWTi 촉매의 암모니아 선택적 촉매 환원(SCR)을 통한 질소산화물 저감
Selective Catalytic Reduction (SCR) of NOx with NH3 on Sb-promoted VWTi Catalysts
E-mail:
초록
NH3-SCR에서 상용촉매로 사용되고 있는 VWTi (VOx/WO3-TiO2)는 300~400 ℃에서 우수한 탈질성능을 나타내지만 300℃ 이하 저온에서는 효율이 저하되는 문제가 있다. 저온 탈질효율을 높이기 위하여 promoter를 첨가한 촉매 연구는 꾸준히 진행되고 있으나 촉매의 저온 탈질효율 증진원인과 촉매특성에 관한 연구는 미비한 실정이다. 본 연구에서는 VWTi에 Sb(antimony)를 첨가함으로써 300 ℃ 이하의 NH3-SCR 반응에서 탈질 성능이 10% 이상 증진되는 것을 확인하였고, 이 때 외부확산/내부확산에 의한 영향을 배제하고자 공간속도와 촉매입자 크기를 제어하였다. 또한 Sb의 첨가유.무에 따른 촉매특성을 BET, TEM/EDS, O2-TPD, H2-TPR, DRIFTs 분석을 수행하여 고찰하였다. Sb의 첨가는 촉매의 표면 흡착 산소 종을 증가시켰으며, 이에 따라 저온에서 촉매의 산화.환원(redox) 특성이 증진되어 우수한 탈질성능을 나타내는 것으로 판단되었다.
VWTi, which is used as a commercial catalyst in NH3-SCR, exhibits excellent denitrification performance at 300 to 400 ℃, but there is a problem that efficiency decreases at low temperatures below 300 ℃. Research on catalysts containing promoter to increase low-temperature denitrification efficiency is steadily progressing. However, research on the cause of the improvement in low-temperature denitrification efficiency of the catalyst and the catalyst properties is insufficient. In this study, it was confirmed that by adding Sb to VWTi, denitrification performance was improved by more than 10% in NH3-SCR reaction below 300 ℃. At this time, the space velocity and the size of the catalyst particles were controlled to exclude the influence of external/internal diffusion. In addition, the catalytic properties according to the presence or absence of Sb were investigated by performing BET, TEM/EDS, O2-TPD, H2-TPR and DRIFTs analysis. It was judged that the addition of Sb increased the adsorbed oxygen species on the surface of the catalyst, thereby enhancing the redox properties of the catalyst at low temperature and exhibiting excellent denitrification performance.
  1. Qi GS, Yang RT, J. Catal., 217(2), 434 (2003)
  2. Metkar PS, Harold MP, Balakotaiah V, Appl. Catal. B: Environ., 111-112, 67 (2012)
  3. Wu Y, Gu B, Erisman JW, Reis S, Fang Y, Lu X, Zhang X, Environ. Pollut., 218, 86 (2016)
  4. Forzatti P, Appl. Catal. A: Gen., 222(1-2), 221 (2001)
  5. Ganjkhanlou Y, Janssens TVW, Vennestrom PNR, Mino L, Paganini MC, Signorile M, Bordiga S, Berlier G, Appl. Catal. B: Environ., 278, 119337 (2020)
  6. Yang Y, Wang M, Tao Z, Liu Q, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Qiao X, Catal. Sci. Technol., 8, 6396 (2018)
  7. Shan Y, Du J, Yu Y, Shan W, Shi X, He H, Appl. Catal. B: Environ., 266, 118655 (2020)
  8. Kwon DW, Park KH, Hong SC, Appl. Catal. A: Gen., 451, 227 (2013)
  9. Alemany LJ, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F, J. Catal., 155(1), 117 (1995)
  10. Liu X, Zhao Z, Ning R, Qin Y, Zhu T, Liu F, Catal. Lett., 150, 375 (2020)
  11. Zhu L, Zhong Z, Xue J, Xu Y, Wang C, Wang L, J. Environ. Sci., 65, 306 (2018)
  12. Yan T Wang S, Xu G, Wu M, Chen J, Li J, ACS Catal., 10(4), 2747 (2020)
  13. Kwon DW, Kim DH, Hong SC, Environ. Technol., 40, 2577 (2019)
  14. Kim DH, Kwon DW, Hong SC, Appl. Surf. Sci., 538, 148088 (2021)
  15. Xu C, Liu J, Zhao Z, Yu F, Cheng K, Wei Y, Duan A, Jiang G, J. Environ. Sci., 31, 74 (2015)
  16. Dumesic JA, Topsoe NY, Topsoe H, Chen Y, Slabiak T, J. Catal., 163(2), 409 (1996)
  17. Lee KJ, Kumar PA, Maqbool MS, Rao KN, Song KH, Ha HP, Appl. Catal. B: Environ., 142-143, 705 (2013)
  18. Huang Z, Du Y, Zhang J, Wu X, Shen H, Jing G, Environ. Sci. Technol., 53, 5309 (2019)
  19. Nam KB, Yeo JH, Hong SC, Ind. Eng. Chem. Res., 58(41), 18930 (2019)
  20. Kim JS, Kim DH, Ha HP, J. Hazard. Mater., 397, 122671 (2020)