화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.1, 28-34, February, 2021
SiO2/Ag 코어-쉘 나노입자의 합성 및 전도성 페이스트 적용
Synthesis of SiO2/Ag Core-shell Nanoparticles for Conductive Paste Application
E-mail:
초록
SiO2/Ag 코어-쉘 나노입자를 수정된 Sto.ber 공정법과 물/dodecylbenzenesulfonic acid (DDBA)/cyclohexane의 역 미셀에서 acetoxime을 환원제로 사용하는 역 미셀 방법을 상호 조합하여 합성하였다. SiO2/Ag 코어-쉘은 UV-visible spectroscopy, XRD, SEM 및 TEM을 사용하여 구조, 형태 및 크기를 조사하였다. SiO2/Ag 코어-쉘의 나노입자 크기는 [물]/[DDBA]의 몰비(WR)의 값을 조절하여 제어할 수 있었다. SiO2/Ag 코어-쉘의 크기와 다분산성은 WR 값이 증가함에 따라 증가하였다. 비정질 SiO2 나노입자 위에 생성된 Ag 나노입자는 430 nm에서 강한 표면 플라즈몬 공명 (SPR) 피크를 나타내었다. SPR 피크는 나노입자 크기의 증가에 따라 장파장으로의 적색 이동을 나타내었다. 합성된 SiO2/Ag 코어-쉘을 분산시켜 70 wt% 조성의 전도성 페이스트를 제조하고, 스크린 인쇄법으로 PET 필름에 코팅하여 전도성을 조사하였다. SiO2/Ag 코어-쉘 페이스트로 코팅된 필름은 상용 Ag 페이스트에 비하여 높은 460~750 μΩ/sq 영역의 표면저항을 나타내었다.
SiO2/Ag core-shell nanoparticles were synthesized by combining modified Sto.ber process and reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane reverse micells. The SiO2/Ag core-shells were studied for structure, morphology and size using UV-visible spectroscopy, XRD, SEM and TEM. The size of a SiO2/Ag core-shell could be controlled by changing the [water]/[DDBA] molar ratio (WR) values. The size and the polydispersity of SiO2/Ag core-shells increased with increase of the WR value. The resultant Ag nanoparticles exhibit a strong surface plasmon resonance (SPR) peak at 430 nm over the amorphous SiO2 nanoparticles. The SPR peak shifted to the red side with increase in nanoparticle size. Conductive pastes with 70 wt% SiO2/Ag core-shell were prepared, and the pastes were coated on the PET films using a screen-printing method. The printed paste film of the SiO2/Ag core-shell showed higher surface resistance than the commercial Ag paste in the range of 460~750 μΩ/sq.
  1. Xu C, Li WJ, Wei YM, Cui XY, Mater. Des., 83, 745 (2015)
  2. Misran H, Salim MA, Ramesh S, Ceram. Int., 44, 5901 (2018)
  3. Kalele S, Gosavi SW, Urban J, Kulkarni SK, Curr. Sci., 91, 1038 (2006)
  4. Sakthisabarimoorthi A, Dhas SAM, Jose M, Mat. Sci. Semicon. Proc., 71, 69 (2017)
  5. Gong JL, Jiang JH, Liang Y, Shen GL, Yu RQ, J. Colloid Interface Sci., 298(2), 752 (2006)
  6. Devecia I, Mercimekb B, Ultrason. Sonochem., 51, 197 (2019)
  7. Dhanalekshmi KI, Meena KS, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 128, 887 (2014)
  8. Alimunnisa J, Ravichandran K, Meena KS, J. Mol. Liq., 231, 281 (2017)
  9. Sohn JH, Pham LQ, Kang HS, Park JH, Lee BC, Kang YS, Radiat. Phys. Chem., 79, 1149 (2010)
  10. Choi EB, Lee JH, Appl. Surf. Sci., 480, 839 (2019)
  11. Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A, Mater. Res. Bull., 43(1), 90 (2008)
  12. Flores JC, Torres V, Popa M, Crespo D, Calderon-Moreno JM, J. Non-Cryst. Solids, 354, 5435 (2008)
  13. Xie Y, Ye R, Liu H, Colloids Surf. A: Physicochem. Eng. Asp., 279, 175 (2006)
  14. Hagura N, Widiyastuti W, Iskandar F, Okuyama K, Chem. Eng. J., 156(1), 200 (2010)
  15. Eastoe J, Hollamby MJ, Hudson L, Adv. Colloid Interface Sci., 128-130, 5 (2006)
  16. Ledo A, Martinez F, Lopez-Quintela MA, Rivas J, Physica B, 398, 273 (2007)
  17. Singha D, Barman N, Sahu K, J. Colloid Interface Sci., 413, 37 (2014)
  18. Popovetskiya PS. Beketovaa DI, Colloids Surf. A: Physicochem. Eng. Asp., 568, 51 (2019)
  19. Lismont M, Paez CA, Dreesen L, J. Colloid Interface Sci., 447, 40 (2015)
  20. Stober W, Fink A, J. Colloid Interface Sci., 26, 62 (1968)
  21. Natte K, Behnke T, Orts-Gil G, Wurth C, Friedrich JF, Osterle W, Resch-Genger U, J. Nanoparticles Res., 14, 680 (2012)
  22. Mogal SI, Gandhi VG, Mishra M, Tripathi S, Shripathi T, Joshi PA, Shah DO, Ind. Eng. Chem. Res., 53(14), 5749 (2014)
  23. Sharma V, Verma D, Okram GS, J. Phys. Condens. Matter., 32, 145302 (2020)
  24. Ghanbary F, Jafarian A, Aust. J. Basic & Appl. Sci., 5, 2889 (2011).
  25. Desai R, Mankad V, Gupta SK, Jha PK, Nanosci. Nanotechnol. Lett., 4, 30 (2012)
  26. Yeshchenko OA, Dmitruk IM, Alexeenko AA, Kotko AV, Verdal J, Pinchuk AO, Ukr. J. Phys., 57, 266 (2012)
  27. Peng S, McMahon JM, Schatz GC, Gray SK, Sun Y, Proc. Natl. Acad. Sci., 107, 14530 (2010)
  28. Ding F, Guidez EB, Aiken CM, Li X, J. Chem. Phys., 40, 244705 (2014)
  29. Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A, Physica E, 27, 104 (2005)
  30. Petit C, Lixon P, Pileni MP, J. Phys. Chem., 97, 12974 (1993)
  31. Yu Y, Jiang Y, Tang Z, Guo Q, Jia J, Xue Q, Wu K, Wang E, Phys. Rev. B, 72, 205405 (2005)
  32. Gong JL, Jiang JH, Liang Y, Shen GL, Yu RQ, J. Colloid Interface Sci., 298(2), 752 (2006)
  33. Moradi Z, Akhbari K, Phuruangrat A, Costantino F, J. Mol. Struct., 1133, 172 (2017)