화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.1, 91-96, February, 2021
활성탄 흡착탑의 실용화를 위한 최적 유동특성 선정 및 열처리 조건에 따른 황화수소 포집능 향상 연구
Investigation of Optimum Condition of Heat Treatment and Flow to Improve H2S Adsorption Capacity for Practical use of an Activated Carbon Tower
E-mail:
초록
본 연구에서는 다양한 환경 공정에서 사용되는 황화수소 제거용 흡착탑 효율을 향상시키기 위해 유동 분석 및 흡착성능 향상 연구를 수행하였다. 연구를 위해 상업적으로 이용 가능한 다양한 활성탄에 칼륨(potassium, K)을 담지하여 개질 활성탄을 제조하였다. 또한 열처리 여부에 따라 흡착 성능과 열처리 과정에서 변화된 표면 특성 사이의 높은 상관관계를 고찰하고자 하였다. 함침법을 통해 K로 코팅된 활성탄은 57배 이상의 흡착 성능을 확인하였다. 이는 균일한 기공 형성과 탄소 표면의 K의 강한 결합은 황화수소의 화학적 및 물리적 흡수에 기여한다고 판단하였다. 다양한 상용활성탄의 표면 구조에 대한 SEM 분석은 열처리를 통한 표면 특성의 변형으로 인해 기공 구조가 파괴되어 흡수 성능이 저하되는 것으로 확인하였다. 각 활성탄의 압력 손실 특성은 입자 크기와 모양에서 가장 낮은 압력 손실이 관찰되었다. 따라서 2~4 mesh 크기의 탄소입자 범위와 불규칙한 모양이 흡착탑의 성능을 향상시키고 경제적 효율성을 확보 할 수 있다고 제안하였다.
This study was conducted to improve the operating conditions of an adsorption tower filled with potassium impregnated activated carbon for high hydrogen sulfide capture capacity. Heat treatment modified the surface properties of activated carbon, and ultimately determined its adsorption capacity. The activated carbon doped with potassium showed 57 times more adsorption at room temperature than that of using the raw adsorbent. It is believed that uniform pore formation and strong bonding of the potassium on the surface of carbon contributed to the chemical and physical absorption of hydrogen sulfide. The SEM analysis on the surface structure of various commercial carbons showed that the modification of surface properties through the heat treatment generated the destruction of pore structures resulted in the decrease of the absorption performance. The pressure drop across the activated carbon bed was closely related with the grain size and shape. The optimum size of irregularly shaped activated carbon granules was 2~4 mesh indicating economical feasibility.
  1. Choi SY, Han DH, Kim SS, Clean Technol., 25(3), 189 (2019)
  2. Park GH, Oh GY, Lee JH, Jung KH, Jung SY, Korean J. Odor Res. Eng., 4(4), 196 (2013)
  3. Han S, Lee C, Joo H, Kim K, Kim S, Ryu H, Lee J, Kim H, Han J, J. Odor Indoor Environ., 18(3), 261 (2019)
  4. Jeong SJ, J. Odor Indoor Environ., 15(2), 119 (2016)
  5. McGraw-Hill, Poisoning and Drug Overdose [cited 2020 Feb. 18], 224-225 (2004).
  6. United states department of labor, Safety and topics: hydrogen sulfide [cited 2020 Feb. 18]; Available from: http://www.osha.gov/dts/chemicalsampling/data/CH_246800.html.
  7. Popoola TP, Grema AS, Latinwo GK, Gutti B, Balogun AS, Int. J. Ind. Chem., 4(1) (2013)
  8. Park DS, Lim JY, Cho YG, Song SJ, Kim JH, Journal of Korea Academia-Industrial Cooperation Society, 15(7), 4675 (2014).
  9. Ministry of Agriculture, Available from: http://www.ndsl.kr/ndsl/search/detail/report/reportSearchResultDetail.do?cn=TRKO200200034599.
  10. Kwon WT, Park NK, Kim JH, Lee TJ, Yi CK, Theories and Applications of Chemical Engineering, 2(1), 709 (1996).
  11. Choi SY, Han DH, Kim SS, Appl. Chem. Eng., 30(4), 460 (2019)
  12. Choi SY, Jang YH, Kim SS, Appl. Chem. Eng., 29(6), 765 (2018)
  13. Laosiripojana N, Sitthikhankaew R, Predapitakkun S, Kiattikomol RW, Pumhiran S, Assabumrungrat S, Energy Procedia, 9, 15 (2011)
  14. Yan R, Liang DT, Tsen L, Tay HJ, Environ. Sci. Technol., 36, 4460 (2002)
  15. Choi DY, Lee JW, Jang SC, Ahn BS, Choi DK, Adsorption, 14(4-5), 533 (2008)
  16. Barelli L, Bidini G, de Arespacochaga N, Perez L, Sisani E, Int. J. Hydrog. Energy, 42(15), 10341 (2017)
  17. Rakmak N, Wiyaratn W, Bunyakan C, Chungsiriporn J, Chem. Eng. J., 162(1), 84 (2010)
  18. Darby R, Chhabra RP, Chemical Engineering Fluid Mechanics, 3rd edition, CRC Press (2016).
  19. Hayashi T, Lee TG, Hazelwood M, Hedrick E, Biswas P, J. Air Waste Manag. Assoc., 50, 922 (2000)
  20. Lee SW, Bae SK, Kwon JH, Na YS, An CD, Yoon YS, Song SK, J. Korea Soc. Environ. Eng., 27(6), 620 (2005)
  21. Adib F, Bagreev A, Bandosz TJ, J. Colloid Interface Sci., 214(2), 407 (1999)
  22. Choi DY, Lee JW, Jang SC, Ahn BS, Choi DK, Adsorption, 14(4-5), 533 (2008)
  23. Rakmak N, Wiyaratn W, Bunyakan C, Chungsiriporn J, Chem. Eng. J., 162(1), 84 (2010)
  24. Phillips CSG, Discuss. Faraday Soc., 7, 241 (1949)
  25. Bruce RM, Donald FY, Theodore HO, Fundamentals of Fluid Mechanics, 4rd edition, John Wiley & Sons, Inc., 475-481 (2002).