Applied Chemistry for Engineering, Vol.32, No.1, 83-90, February, 2021
저온 열처리가 탄소 음극재의 물리ㆍ화학적 특성 및 이차전지 성능에 미치는 영향
Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries
E-mail:,
초록
본 연구에서는 저온 열처리 탄소의 물리ㆍ화학적 특성이 이차전지 음극재로서의 전기화학적 거동에 미치는 영향에 대하여 고찰하였다. 석유계 핏치의 코크스화를 위하여 600 ℃ 열처리를 수행하였으며 제조된 코크스는 700~1500 ℃로 탄화 온도를 달리하여 저온 열처리 탄소 음극재로 제조되었다. 탄소 음극재의 물리 화학적 특성은 N2 흡.탈착 등온선, X-ray diffraction (XRD), 라만 분광(Raman spectroscopy), 원소 분석 등을 통하여 확인하였으며,저온 열처리 탄소의 음극 특성은 반쪽 전지를 통한 용량, 초기 쿨롱 효율(ICE, initial Coulomb efficiency), 율속, 수명 등의 전기화학적 특성을 통하여 고찰하였다. 저온 열처리 탄소의 결정 구조는 1500 ℃ 이하에서 결정자의 크기와 진밀도가 증가하였으며 비표면적은 감소하였다. 저온 열처리 탄소의 물리화학적 특성 변화에 따라 음극재의 전기화학 특성이 변화하였는데 수명 특성은 H/C 원소 비, 초기 쿨롱 효율은 비표면적, 율속 특성은 진밀도의 특성에 기인하는 것으로 판단되었다.
In this study, effects of the physical and chemical properties of low temperature heated carbon on electrochemical behavior as a secondary battery anode material were investigated. A heat treatment at 600 ℃ was performed for coking of petroleum based pitch, and the manufactured coke was heat treated with different heat temperatures at 700~1,500 ℃ to prepare low temperature heated anode materials. The physical and chemical properties of carbon anode materials were studied through nitrogen adsorption and desorption, X-ray diffraction (XRD), Raman spectroscopy, elemental analysis. Also the anode properties of low temperature heated carbon were considered through electrochemical properties such as capacity, initial Coulomb efficiency (ICE), rate capability, and cycle performance. The crystal structure of low temperature (≤ 1500 ℃) heated carbon was improved by increasing the crystal size and true density, while the specific surface area decreased. Electrochemical properties of the anode material were changed with respect to the physical and chemical properties of low temperature heated carbon. The capacity and cycle performance were most affected by H/C atomic ratio. Also, the ICE was influenced by the specific surface area, whereas the rate performance was most affected by true density.
Keywords:Petroleum pitch;Low temperature heated carbon;Lithium ion battery;Material characteristic;Electrochemical performance
- Han YJ, Kwon YJ, Lee JU, Im JS, Polym. Sci. Technol., 28(3), 195 (2017)
- Zaghib K, Brochu F, Guerfi A, Kinoshita K, J. Power Sources, 103(1), 140 (2001)
- Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL, J. Phys. Chem., 117, 1257 (2013)
- Nishi Y, J. Power Sources, 100(1-2), 101 (2001)
- Liu H, Su D, Zhou R, Sun B, Wang G, Qiao SZ, Adv. Eng. Mater., 21, 970 (2012)
- Hu H, Chen G, Polym. Compos., 31, 1770 (2010)
- Chen GH, Wu DJ, Weng WG, Yan WL, J. Appl. Polym. Sci., 82(10), 2506 (2001)
- Lee JH, Lee S, Paik U, Choi YM, J. Power Sources, 147(1-2), 249 (2005)
- Azuma H, Imoto H, Yamada SI, Sekai K, J. Power Sources, 81, 1 (1999)
- Robertson J, Adv. Phys., 35, 317 (1986)
- Li Y, Mu L, Hu YS, Li H, Chen L, Huang X, Energy Storage Mater., 2, 139 (2016)
- Li Y, Hu YS, Li H, Chen L, Huang X, J. Mater. Chem. A, 4, 96 (2016)
- Liu Y, Xue JS, Zheng T, Dahn JR, Carbon, 34, 193 (1996)
- Jafari SM, Khosravi M, Mollazadeh M, Electrochim. Acta, 203, 9 (2016)
- Abe Y, Saito T, Kumagai S, Batteries, 4, 1 (2018)
- Vali R, Janes A, Thomberg T, Lust E, Electrochim. Acta, 253, 536 (2017)
- Sato Y, Nagayama K, Sato Y, Takamura T, J. Power Sources, 189(1), 490 (2009)
- Sinha NN, Marks TH, Dahn HM, Smith AJ, Burns JC, Coyle DJ, Dahn JJ, Dahn JR, J. Electrochem. Soc., 159, 1672 (2012)
- Lee SE, Kim JH, Lee YS, Bai BC, Im JS, Carbon Lett., 30, 545 (2020)
- Takami N, Satoh A, Ohsaki T, Kanda M, J. Electrochem. Soc., 145(2), 478 (1998)
- Savage G, Carbon-Carbon Composites, 2nd, 1-10, Woodhead Publishing, Sawston, England (1993).
- Otani S, Carbon, 3, 31 (1965)
- Kamiya KI, Inagaki M, Mizutani M, Noda T, Bull. Chem. Soc. Jpn., 41, 2169 (1968)
- Oberlin A, Rouzaud JN, Goma J, J. Chim. Phys., 81, 701 (1984)
- Tebo J, McGraw-Hill Encyclopedia of Chemistry, 2nd, 455-459, McGraw-Hill Education, NY, USA (1993).
- Ammar MR, Galy N, Rouzaud JN, Toulhoat N, Vaudey CE, Simon P, Moncoffre N, Carbon, 95, 364 (2015)
- Schuepfer DB, Badaczewski F, Guerra-Castro JM, Hofmann DM, Heiliger C, Smarsly B, Klar PJ, Carbon, 161, 359 (2020)
- Marsh H, Griffiths J, New processes and new applications, Ext. Abst. of International Symposium on Carbon, Toyohashi, Japan (1982).
- Inagaki M, Feiyu K, Carbon Materials Science and Engineering, Tsinghua Univ. Press., 37-40, Beijing, China (2006).
- Walker PL, Thrower PA, Chemistry and Physics of Carbon, 149-151, CRC Press, Florida, USA (1993).
- Mochida I, Ku CH, Yoon SH, Korai Y, J. Power Sources, 75(2), 214 (1998)
- Kim BH, Kim JH, Kim JG, Im JS, Lee CW, Kim S, J. Ind. Eng. Chem., 45, 99 (2017)
- Ishii T, Kaburagi Y, Yoshida A, Hishiyama Y, Oka H, Setoyama N, Kyotani T, Carbon, 125, 146 (2017)
- Zhou P, Papanek P, Bindra C, Lee R, Fischer JE, J. Power Sources, 68(2), 296 (1997)
- Sato K, Noguchi M, Demachi A, Oki N, Endo M, Science, 264(5158), 556 (1994)
- Claye A, Fischer JE, Electrochim. Acta, 45(1-2), 107 (1999)
- Leung K, Budzien JL, Phys. Chem. Chem. Phys., 12, 6583 (2010)
- Ishii T, Kashihara S, Hoshikawa Y, Ozaki J, Kannari N, Takai K, Enoki T, Kyotani T, Carbon, 80, 135 (2014)
- Schaublin R, Henry J, Dai Y, C. R. Phys., 9, 389 (2008)
- kaneko K, Ishii C, Colloid Surf., 67, 203 (1992)
- An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DLIII, Carbon, 105, 52 (2016)
- Zheng T, Gozdz AS, Amatucci GG, J. Electrochem. Soc., 146(11), 4014 (1999)
- Heubner C, Schneider M, Michaelis A, Adv. Eng. Mater., 10, 1 (2020)
- Chung DW, Ebner M, Ely DR, Wood V, Garcia RE, Model. Simul. Mater. Sci. Eng., 21, 1 (2013)
- Schuepfer DB, Badaczewski F, Guerra-Castro JM, Hofmann DM, Heiliger C, Smarsly B, Klar PJ, Carbon, 161, 359 (2020)
- Winter M, Besenhard JO, Spahr ME, Novak P, Adv. Mater., 26, 725 (1998)
- Bai P, Li J, Brushett FR, Bazant MZ, Energy Environ. Sci., 9, 3221 (2016)
- Wang A, Kadam S, Li H, Shi S, Qi Y, Npj Comput. Mater., 4, 1 (2018)
- Zheng T, Mckinnon WR, Dahn JR, J. Electrochem. Soc., 143(7), 2137 (1996)
- Jiang Z, Alamgir M, Abraham KM, J. Electrochem. Soc., 142(2), 333 (1995)
- Cao Z, Li B, Yang S, Adv. Mater., 31, 1 (2019)
- Winter M, Besenhard JO, Spahr ME, Novak P, Adv. Mater., 26, 725 (1998)
- Shim J, Striebel KA, J. Power Sources, 119, 934 (2003)