화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.3, 540-551, March, 2021
Computational fluid dynamics simulation of methanol to olefins in stage circulating fluidized bed riser: Effect of reactor stage parameters on product yields
E-mail:
The risers of a conventional fluidized bed reactor and a stage fluidized bed reactor for the convention of methanol to olefins (MTO) were simulated using computational fluid dynamics. The reaction rates of the MTO reaction were validated to successfully match with the literature experiment. Then, the reactor stage parameters were examined by using the 2k design of the experiment method, including the number of reactor stages, the thickness of the reactor stage, and the wall temperature of the reactor stage. The stage circulating fluidized bed riser decreased the yield of ethene but increased the yield of propene and light olefins. From the obtained solid volume fraction profile, the stage circulating fluidized bed riser could reduce the back-mixing and increase the system turbulence, which promotes the light olefins of the MTO reaction yield. The wall temperature of the reactor stage did not significantly affect the chemical reaction in the circulating fluidized bed riser.
  1. Chalermsinsuwan B, Samruamphianskun T, Piumsomboon P, Chem. Eng. Res. Des., 92(11), 2479 (2014)
  2. Shi YS, Du XZ, Yang LJ, Sun Y, Yang YP, Int. J. Hydrog. Energy, 38(32), 13974 (2013)
  3. Ren BF, Li H, Wang D, Wang J, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 48, 921 (2003).
  4. Zhu L, Xie N, Jiang P, Li LL, Chen H, Chem. Eng. Res. Des., 114, 247 (2016)
  5. Sun Zhao, Xiang Wenguo, Chen Shiyi, Int. J. Hydrog. Energy, 41(39), 17323 (2016)
  6. Ge S, Lou Z, Yang Y, Huang Z, Sun J, Wang J, Yang Y, AIChE J., 66, 1 (2020)
  7. Tian P, Wei Y, Ye M, Liu Z, ACS Catal., 5, 1922 (2015)
  8. Stocker M, Microporous Mesoporous Mater., 29, 3 (1999)
  9. Alvaro-Munoz T, Marquez-Alvarez C, Sastre E, Appl. Catal. A: Gen., 472, 72 (2014)
  10. Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A, Microporous Mesoporous Mater., 203, 41 (2015)
  11. Bleken FL, Chavan S, Olsbye U, Boltz M, Ocampo F, Louis B, Appl. Catal. A: Gen., 447-448, 178 (2012)
  12. Ivanova S, Lebrun C, Vanhaecke E, Pham-Huu C, Louis B, J. Catal., 265(1), 1 (2009)
  13. Wang Q, Wang L, Wang H, Li Z, Wu H, Li G, Zhang X, Zhang S, Asia-Pacific J. Chem. Eng., 6, 596 (2011)
  14. Yu Q, Meng X, Liu J, Li C, Cui Q, Microporous Mesoporous Mater., 181, 192 (2013)
  15. Sadrameli SM, Fuel, 140, 102 (2015)
  16. Sadrameli SM, Fuel, 173, 285 (2016)
  17. Awayssa O, Al-Yassir N, Aitani A, Al-Khattaf S, Appl. Catal. A: Gen., 477, 172 (2014)
  18. Freiding J, Kraushaar-Czarnetzki B, Appl. Catal. A: Gen., 391(1-2), 254 (2011)
  19. Izadbakhsh A, Khorasheh F, Chem. Eng. Sci., 66(23), 6199 (2011)
  20. Huang X, Li H, Li H, Xiao WD, Fuel Process. Technol., 150, 104 (2016)
  21. Zhuang YQ, Chen XM, Luo ZH, Xiao J, Comput. Chem. Eng., 60, 1 (2014)
  22. Lu BN, Luo H, Li H, Wang W, Ye M, Liu ZM, Li JH, Chem. Eng. Sci., 143, 341 (2016)
  23. Schoenfelder H, Hinderer J, Werther J, Heil FJ, Chem. Eng. Sci., 49, 5377 (1994)
  24. Soundararajan S, Dalai AK, Berruti F, Fuel, 80, 1187 (2001)
  25. Gupta R, Kumar V, Srivastava VK, Rev. Chem. Eng., 21(2), 95 (2005)
  26. Aramesh R, Akbari V, Shamiri A, Hussain MA, Aghamohammadi N, Measurement, 83, 106 (2016)
  27. Chalermsinsuwan B, Kuchonthara P, Piumsomboon P, Chem. Eng. Process., 49(11), 1144 (2010)
  28. Zhu YP, Xiao FZ, Luo ZH, Asia-Pacific J. Chem. Eng., 9, 280 (2014)
  29. Yang S, Peng L, Liu WM, Zhao H, Lv XL, Li HZ, Zhu QS, Powder Technol., 296, 37 (2016)
  30. Zhang YM, Grace JR, Bi XT, Lu CX, Shi MX, Chem. Eng. Sci., 64(14), 3270 (2009)
  31. Samruamphianskun T, Piumsomboon P, Chalermsinsuwan B, Chem. Eng. J., 210, 237 (2012)
  32. Jiang CW, Zheng ZW, Zhu YP, Luo ZH, Chem. Eng. Res. Des., 90(7), 915 (2012)
  33. Wu GP, He Y, Chen W, Chem. Eng. J., 351, 1104 (2018)
  34. Chang J, Zhang K, Chen HG, Yang YP, Zhang LM, Chem. Eng. Res. Des., 91(12), 2355 (2013)
  35. Zhang JY, Lu BN, Chen FG, Li H, Ye M, Wang W, Chem. Eng. Sci., 189, 212 (2018)
  36. Chalermsinsuwan B, Piumsomboon P, Chem. Eng. Sci., 66(22), 5602 (2011)
  37. Cloete S, Amini S, Johansen ST, Powder Technol., 205(1-3), 103 (2011)
  38. Cloete S, Johansen ST, Amini S, Powder Technol., 239, 21 (2013)
  39. Lv XL, Li HZ, Zhu QS, Chem. Eng. J., 236, 149 (2014)
  40. Zhang YW, Ma Q, Xu X, Xiao YH, Lei FL, Chem. Eng. Process., 98, 71 (2015)
  41. Phupanit J, Soanuch C, Korkerd K, Piumsomboon P, Chalermsinsuwan B, Asia-Pacific J. Chem. Eng., 14, 1 (2018)
  42. Aghamohammadi S, Haghighi M, Charghand M, Mater. Res. Bull., 50, 462 (2014)
  43. Montgomery DC, Design and analysis of experiments, Wiley and Sons, New York (2001).
  44. Karimipour S, Gerspacher R, Gupta R, Spiteri RJ, Fuel, 103, 308 (2013)
  45. Kim JH, Rho JH, Proc. IMechE, Part E: Process. Mech. Eng., 231, 914 (2016).
  46. Yurata T, Piumsomboon P, Chalermsinsuwan B, Chem. Eng. Res. Des., 153, 401 (2020)
  47. Bos AN, Tromp PJ, Akse HN, Ind. Eng. Chem. Res., 34(11), 3808 (1995)
  48. Ye M, Li H, Zhao Y, Zhang T, Liu Z, Adv. Chem. Eng., 47, 279 (2015)
  49. Rostami RB, Ghavipour M, Di Z, Wang Y, Behbahani RM, RSC Adv., 5, 81965 (2015)
  50. Sedighi M, Bahrami H, Towfighi J, J. Ind. Eng. Chem., 20(5), 3108 (2014)