화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 305-311, March, 2021
Biofuel upgrade reactions via phase-transfer catalysis of methanotrophs
E-mail:,
Methane, one of the six major greenhouse gases, poses a serious environmental problem with the potential for global warming 20 times that of CO2. Although a large amount of methane is generated worldwide, its recovery and utilization are very low. One of the environmentally friendly ways to use methane is the biological gas-to-liquids (Bio-GTL) process, in which methane is biologically converted to useful products by microorganisms. Methanotrophs are strains that can convert methane to methanol at ambient conditions using methane monooxygenase (MMO). Here, we report an efficient phase-transfer catalysis system for methane-to-methanol conversion using methanotrophs. The methanotroph used in the work is Methylomicrobium alcaliphilum 20Z of which the methanol dehydrogenase (MDH) enzyme is removed to enhance methanol accumulation. The phase-transfer catalysis system does not require any separation processes and facilitates the mass transfer of methane gas, thereby increasing the methanol productivity and lowering the production cost. The methanol productivity is 0.717 g/L/h, which is superior to the results reported to date. In addition, the use of a cellulose-membrane reactor system enables multiple biocatalytic reactions without a significant decrease in productivity.
  1. Hoehler TM, Alperin MJ, Nature, 507(7493), 436 (2014)
  2. Howarth RW, Santoro R, Ingraffea A, Clim. Change, 106, 679 (2011)
  3. Knoblauch C, Beer C, Liebner S, Grigoriev MN, Pfeiffer EM, Nat. Clim. Change, 8, 309 (2018)
  4. Chen L, Feng YC, Kogawa T, Okajima J, Komiya A, Maruyama S, Energy, 143, 128 (2018)
  5. Shilov AE, Shul'pin GB, Chem. Rev., 97(8), 2879 (1997)
  6. Anderson RB, Kolbel H, Ralek M, The fischer-tropsch synthesis, Academic Press, New York, 1984.
  7. Asenjo JA, Suk JS, J. Ferment. Technol., 64, 271 (1986)
  8. Schulz H, Appl. Catal. A: Gen., 186(1-2), 3 (1999)
  9. Chen S, Qiu Y, Xing X, Wang C, Liu C, Zhang Y, Hong J, Li J, Zhang D, Macromol. Res., 28, 228 (2019)
  10. Piermartini P, Boeltken T, Selinsek M, Pfeifer P, Chem. Eng. J., 313, 328 (2017)
  11. Boomer E, Naldrett S, Can. J. Res., 25, 494 (1947)
  12. Dowden E, Walker G, Patent GB1244001A, (1971).
  13. Park D, Lee J, Korean J. Chem. Eng., 30(5), 977 (2013)
  14. De Renzo DJ, Energy from bioconversion of waste materials, Noyes Data Corporation Park Ridge, New York, 1977.
  15. Mangayil R, Karp M, Santala V, Int. J. Hydrog. Energy, 37(17), 12198 (2012)
  16. Duan CH, Luo MF, Xing XH, Bioresour. Technol., 102(15), 7349 (2011)
  17. Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW, J. Microbiol. Biotechnol., 24, 1597 (2014)
  18. Wood DA, Nwaoha C, Towler BF, J. Nat. Gas Sci. Eng., 9, 196 (2012)
  19. Conrado RJ, Gonzalez R, Science, 343(6171), 621 (2014)
  20. Hanson RS, Hanson TE, Microbiol. Rev., 60, 439 (1996)
  21. Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT, Sci. Rep., 6, 21585 (2016)
  22. Strong PJ, Xie S, Clarke WP, Environ. Sci. Technol., 49, 4001 (2015)
  23. Xin JJ, Cui JR, Niu JZ, Hua SF, Xia CG, Li SB, Zhu LM, Biocatal. Biotransfor., 22, 225 (2004)
  24. Nguyen TT, Hwang IY, Na JG, Lee EY, J. Ind. Microbiol. Biotechnol., 46, 675 (2019)
  25. Park SM, Madhavaraj L, Kim SW, Korean Soc. Biotechnol. Bioeng. J., 32, 124 (2017)
  26. Patel SK, Kalia VC, Joo JB, Kang YC, Lee JK, Bioresour. Technol., 297, 122433 (2020)
  27. Yoo YS, Han JS, Ahn CM, Min DH, Mo WJ, Yoon SU, Lee JG, Lee JY, Kim CG, J. Korean Soc. Environ. Eng., 33, 662 (2011)
  28. Hur DH, Na JG, Lee EY, J. Chem. Technol. Biotechnol., 92(2), 311 (2017)
  29. Park S, Choo S, Korean. J. Biotechnol. Bioeng., 8, 341 (1993)
  30. Patel SK, Shanmugam R, Kalia VC, Lee JK, Bioresour. Technol., 304, 123022 (2020)
  31. Davie MK, Zatsepina OY, Buffett BA, Mar. Geol., 203, 177 (2004)
  32. Zhao QQ, Sun J, Liu BJ, He JX, Chem. Eng. J., 262, 756 (2015)
  33. Crossley S, Faria J, Shen M, Resasco DE, Science, 327(5961), 68 (2010)
  34. Nguyen LT, Lee EY, Biotechnol. Biofuels, 12, 147 (2019)
  35. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO, Nat. Methods, 6, 343 (2009)
  36. Choi KH, Lee D, Park BJ, J. Colloid Interface Sci., 580, 592 (2020)
  37. Lim JH, Kang DW, Park BJ, Macromol. Res., 25(3), 282 (2017)
  38. Wu D, Yang B, Ruckenstein E, Chen H, J. Phys. Chem. Lett., 10, 721 (2019)
  39. Eshinimaev BT, Khmelenina V, Sakharovskii V, Suzina N, Trotsenko YA, Microbiology, 71, 512 (2002)
  40. Furuto T, Takeguchi M, Okura I, J. Mol. Catal. A-Chem., 144, 257 (1999)
  41. Han JI, Semrau JD, FEMS Microbiol. Lett., 187, 77 (2000)
  42. de la Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG, Microb. Cell Fact., 14, 188 (2015)
  43. Desai SH, Koryakina I, Case AE, Toney MD, Atsumi S, Metab. Eng., 38, 98 (2016)
  44. Lee SG, Goo JH, Kim HG, Oh JI, Kim YM, Kim SW, Biotechnol. Lett., 26(11), 947 (2004)