화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.2, 314-321, March, 2021
Carborane을 이용한 PS-b-P2VP 블록공중합체 나노패턴의 식각 저항성 향상
Carborane Reinforced PS-b-P2VP Block Copolymer Nanopatterns
E-mail:
초록
블록공중합체를 이용한 저비용, 고효율 나노패턴 제조 기술은 다양한 분야에 활용성을 가지고 활발히 연구되고 있다. Polystyrenre-b-poly(2-vinyl pyridine)(PS-b-P2VP) 블록공중합체는 패턴 정렬의 용이성, 대면적 배향 가능, 금속 치환 가능 등의 장점으로 범용적으로 사용되는 블록공중합체이지만 유기물로만 구성되어 있기에 패턴 전사에 필요한 식각 선택도(etching selectivity)가 부족한 한계를 가지고 있다. 본 연구에서는 간단한 공정으로 carborane 화합물을 PS-b-P2VP의 P2VP 블록에 선택적으로 도입시킬 수 있는 방법을 제시하여 P2VP 블록의 식각 저항성을 크게 향상시킬 수 있음을 보였다. 이 연구 결과는 유기물로만 이루어진 대부분의 블록공중합체의 낮은 식각 선택도 문제를 극복하는데 중요한 단서를 제공해 줄 수 있을 것이며 향후 블록공중합체의 다양한 나노 패턴 주형으로서의 활용성을 더욱 넓힐 수 있을 것으로 기대한다.
Block copolymers self-assembly has been intensively studied because they offer a simple and low-cost nanopatterning method which can be applicable in various fields. Polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) is one of most commonly used block copolymer due to its advantages such as easy control of pattern morphology, largearea orientation, and simple process for metal substitution. However, since it is composed of only organic polymers, it has insufficient etching selectivity between two blocks required for pattern transfer. In this study, we show that with a simple process, carborane compound can be selectively introduced into the P2VP domain of PS-b-P2VP which can significantly improve the etching resistance of the P2VP block. This result can provide important clue to solve the common problem of low etching selectivity in block copolymers composed of organic materials, and therefore it is expected that the usefulness of block copolymers as various nanolithographic templates could be further expanded.
  1. Nunes SP, Car A, Ind. Eng. Chem. Res., 52(3), 993 (2013)
  2. Uehara H, Kakiage M, Sekiya M, Sakuma D, Yamonobe T, Takano N, Barraud A, Meurville E, Ryser P, ACS Nano, 3, 924 (2009)
  3. Kim O, Kim SY, Park B, Hwang W, Park MJ, Macromolecules, 47(13), 4357 (2014)
  4. Jeong CK, Baek KM, Niu S, Nam TW, Hur YH, Park DY, Hwang GT, Byun M, Wang ZL, Jung YS, Lee KJ, Nano Lett., 14, 7031 (2014)
  5. Herr DJC, J. Mater. Res., 26, 122 (2011)
  6. Kim HC, Park SM, Hinsberg WD, Chem. Rev., 110(1), 146 (2010)
  7. Hagglund C, Zeltzer G, Ruiz R, Thomann I, Lee HBR, Brongersma ML, Bent SF, Nano Lett., 13, 3352 (2013)
  8. Cha SK, Mun JH, Chang T, Kim SY, Kim JY, Jin HM, Lee JY, Shin J, Kim KH, Kim SO, ACS Nano, 9, 5536 (2015)
  9. Park M, Harrison C, Chaikin PM, Register RA, Adamson DH, Science, 276(5317), 1401 (1997)
  10. Darling SB, Prog. Polym. Sci., 32, 1152 (2007)
  11. Bang J, Jeong U, Ryu DY, Russell TP, Hawker CJ, Adv. Mater., 21(47), 4769 (2009)
  12. Xu T, Stevens J, Villa JA, Goldbach JT, Guarim KW, Black CT, Hawker CJ, Russell TR, Adv. Funct. Mater., 13(9), 698 (2003)
  13. Park JH, Khandekar AA, Park SM, Mawst LJ, Kuech TF, Nealey PF, J. Cryst. Growth, 297(2), 283 (2006)
  14. Hirai T, Leolukman M, Hayakawa T, Kakimoto M, Gopalan P, Macromolecules, 41(13), 4558 (2008)
  15. Hirai T, Leolukman M, Liu CC, Han E, Kim YJ, Ishida Y, Hayakawa T, Kakimoto M, Nealey PF, Gopalan P, Adv. Mater., 21(43), 4334 (2009)
  16. Cushen JD, Otsuka I, Bates CM, Halila S, Fort S, et al., ACS Nano, 6, 3424 (2012)
  17. Ross CA, Jung YS, Chuang VP, Ilievski F, Yang JK, et al., J. Vac. Sci. Technol. B, 26, 2489 (2008)
  18. Jung YS, Ross CA, Adv. Mater., 21(24), 2540 (2009)
  19. Bita I, Yang JKW, Jung YS, Ross CA, Thomas EL, Berggren KK, Science, 321, 939 (2008)
  20. Tavakkoli KGA, Gotrik KW, Hannon AF, Alexander-Katz A, Ross CA, Berggren KK, Science, 336(6086), 1294 (2012)
  21. Yang JKW, Jung YS, Chang JB, Mickiewicz RA, Alexander-Katz A, Ross CA, Berggren KK, Nat. Nanotechnol., 5(4), 256 (2010)
  22. Kim E, Kim W, Lee KH, Ross CA, Son JG, Adv. Funct. Mater., 24(44), 6981 (2014)
  23. Peng Q, Tseng YC, Darling SB, Elam JW, Adv. Mater., 22(45), 5129 (2010)
  24. Materials N, Synthesis SI, Templates BCA, ACS Nano, 5, 4600 (2011)
  25. Tseng YC, Peng Q, Ocola LE, Elam JW, Darling SB, J. Phys. Chem. C, 115, 17725 (2011)
  26. Bucholz TL, Loo YL, Macromolecules, 39(18), 6075 (2006)
  27. Hammond MR, Cochran E, Fredrickson GH, Kramer EJ, Macromolecules, 38(15), 6575 (2005)
  28. Shamsudin SAB, Sakaguchi G, Takenaka M, Hasegawa H, Macromol. Symp., 327, 72 (2013)
  29. Kim YC, Kim SY, RSC Adv., 8, 19532 (2018)
  30. Chai J, Wang D, Fan XN, Buriak JM, Nat. Nanotechnol., 2(8), 500 (2007)
  31. Chai J, Buriak JM, ACS Nano, 2, 489 (2008)
  32. Gu XD, Liu ZW, Gunkel I, Chourou ST, Hong SW, Olynick DL, Russell TP, Adv. Mater., 24(42), 5688 (2012)
  33. Simon YC, Moran IW, Carter KR, Coughlin EB, ACS Appl. Mater. Interfaces, 1, 1887 (2009)
  34. Bratton D, Yang D, Dai J, Ober CK, Polym. Adv. Technol., 17, 94 (2006)
  35. Valkama S, Kosonen H, Ruokolainen J, Haatainen T, Torkkeli M, Serimaa R, Ten Brinke G, Ikkala O, Nat. Mater., 3(12), 872 (2004)
  36. Ruokolainen J, ten Brinke G, Ikkala O, Adv. Mater., 11(9), 777 (1999)
  37. Ong CW, Huang H, Zheng B, Kwok RWM, Hui YY, Lau WM, J. Appl. Phys., 95, 3527 (2004)
  38. Moulder JF, Stickle WF, Sobol PE, Briggs D, Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, pp38 2005.