화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.2, 163-167, April, 2021
금-펩타이드 하이브리드 나노입자의 제조와 메틸렌 블루의 촉매 환원 응용
Preparation of Gold-Peptide Hybrid Nanoparticles and Its Applications in Catalytic Reduction of Methylene Blue
E-mail:
초록
본 연구에서는 타이로신이 풍부한 펩타이드, Tyr-Tyr-Leu-Tyr-Tyr (YYLYY)를 이용하여 금 나노입자를 담지한 균일한금-펩타이드 계층적 초분자 구조체의 합성에 대해 연구하였다. 펩타이드의 광가교 반응을 통해 다이타이로신 결합으로 자기조립된 펩타이드 나노입자를 합성하였고, 타이로신의 생체 광물화 특성을 이용하여 금-펩타이드 하이브리드 나노입자를 친환경적 방법으로 합성하였다. 합성된 금-펩타이드 하이브리드 나노입자는 투과 전자 현미경(TEM), 주사투과 전자 현미경(SEM), 동적 광산란(DLS), 자외선-가시광선 분광광도계(UV-Vis spectroscopy), 에너지 분산 X선 분광법(STEM-EDS), X선 회절 분석법(XRD)을 통해 분석하였다. 또한 합성된 금-펩타이드 하이브리드 나노입자는 메틸렌블루의 환원 반응에서 13.4 × 10-3 s-1의 반응속도 상수를 가지는 촉매 특성을 확인하였다.
In the present work, we studied a method for the synthesis of uniform gold-peptide hierarchical superstructures using tyrosine rich peptide, Tyr-Tyr-Leu-Tyr-Tyr (YYLYY). Peptide nanoparticles self-assembled by dityrosine bonds were synthesized through the photo-crosslinking reaction of the peptide, and gold-peptide hybrid nanoparticles were synthesized using biomineralization properties of tyrosine in a green synthetic manner. The synthesized gold-peptide hybrid nanoparticles were then characterized by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, UV-vis spectroscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, the catalytic activity of gold-peptide hybrid nanoparticles was confirmed by the reduction reaction of methylene blue where the catalytic reaction rate constant was 13.4 × 10-3 s-1.
  1. Zan GT, Wu QS, Adv. Mater., 28(11), 2099 (2016)
  2. Huang J, Lin L, Sun D, Chen H, Yang D, Li Q, Chem. Sov. Rev., 44, 6330 (2015)
  3. Dickerson MB, Sandhage KH, Naik RR, Chem. Rev., 108(11), 4935 (2008)
  4. Tan YN, Lee JY, Wang DIC, J. Am. Chem. Soc., 132(16), 5677 (2010)
  5. Baek K, Hwang I, Roy I, Shetty D, Kim K, Accounts Chem. Res., 48, 2221 (2015)
  6. Luo TZ, Kiick KL, J. Am. Chem. Soc., 137(49), 15362 (2015)
  7. Fancy DA, Kodadek T, Proc. Natl. Acad. Sci. U. S. A., 96, 6020 (1999)
  8. Lee J, Ju M, Cho OH, Kim Y, Nam KT, Adv. Sci., 6, 180125 (2019)
  9. Ramezani F, Amanlou M, Rafii-Tabar H, Amino Acids, 46, 911 (2014)
  10. Min KI, Kim DH, Lee HJ, Lin L, Kim DP, Angew. Chem.-Int. Edit., 130, 5732 (2018)
  11. Lu J, Fang J, Li J, Wang C, He X, Zhu L, Xu Z, Zeng H, ACS Appl. Nano Mater., 3, 156 (209)
  12. Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M, Langmuir, 20(18), 7825 (2004)
  13. Xie J, Lee JY, Wang DI, Ting YP, ACS Nano, 1, 429 (2007)
  14. Si S, Bhattacharjee RR, Banerjee A, Mandal TK, Chem. Eur. J., 12, 1256 (2006)
  15. Ding Y, Li Y, Qin M, Cao Y, Wang W, Langmuir, 29(43), 13299 (2013)
  16. Lu J, Fang J, Li J, Wang C, He Z, Zhu L, Xu Z, Zeng H, ACS Appl. Nano Mater., 3, 156 (2019)
  17. Wang N, Zhang ZR, Huang JR, Hu YX, Chem. Eng. Sci., 203, 312 (2019)
  18. Yao T, Cui T, Wang H, Xu L, Cui F, Wu J, Nanoscale, 6, 7666 (2014)
  19. Xiao F, Ren H, Zhou H, Wang H, Wang N, Pan D, ACS Appl. Nano Mater., 2, 5420 (2019)