화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.2, 168-173, April, 2021
마이크로웨이브 에너지를 이용한 레몬그라스로부터 플라보노이드 성분의 추출: `CCD-RSM을 이용한 최적화
Extraction of Total Flavonoids from Lemongrass Using Microwave Energy: Optimization Using CCD-RSM
E-mail:
초록
본 연구에서는 마이크로웨이브 에너지를 이용하여 항산화성분을 다량 함유하고 있는 레몬그라스로부터 플라보노이드 성분을 추출하였다. 또한 반응표면분석법 중 중심합성계획모델을 이용하여 추출공정을 최적화하였다. 추출공정의 독립변수로는 주정/초순수의 부피비, 마이크로웨이브 조사시간, 마이크로웨이브 조사세기를 설정하였고, 반응치는 추출수율과 플라보노이드 함량을 확인하였다. CCD-RSM 분석 결과 최적조건인 주정/초순수 부피비(56.3 vol.%), 마이크로웨이브 조사시간(6.1 min), 마이크로웨이브 조사세기(574.6 W)에서 추출수율(17.2%)와 플라보노이드 함량(44.7 μg QE/mL dw)의 결과를 얻는 것으로 나타났다. 이때 종합만족도는 D = 0.8562이고, P-value는 추출수율(0.037)과 플라보노이드 함량(0.002)으로 나타났다. 이 조건에서의 실제실험 결과 오차율은 5.0% 이하로 나타나 높은 유의수준의 결과를 얻을 수 있었다.
In this study, we measured total flavonoids after extracting the total flavonoids from lemongrass which is known to have a high content of antioxidant ingredients when using microwave energy. Also, optimal extraction conditions of active ingredients using central composite design-response surface methodology (CCD-RSM) were presented. Both ultrapure water and alcohol were used as extraction solvents and the volume ratio of ethanol/ultrapure water, microwave irradiation time, and microwave irradiation power were set as independence variables. And the extraction yield and total flavonoids were measured. The optimal extraction conditions using CCD-RSM were the volume ratio of ethanol/ultrapure water = 56.3 vol.%, the microwave irradiation time = 6.1 min, and the microwave irradiation power = 574.6 W. We could also obtain expected results of yield = 17.2 wt.% and total flavonoids = 44.7 μg QE/mL dw under the optimum conditions. The comprehensive satisfaction degree of this formula was 0.8562. The P-value was calculated for the yield of 0.037 and the total flavonoids content of 0.002. The average error from actual experiments established for the verification of conclusions was lower than 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimization of extraction process.
  1. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A, Biochim. Biophys. Acta Biomembr., 1861(4), 802 (2017)
  2. Lee MY, Yoo MS, Whang YJ, JinYJ, Hong MH, Pyo YH, Korean J. Food Sci. Technol., 44(5), 540 (2012)
  3. Cook NC, Samman S, J. Nutr. Biochem., 7, 66 (1996)
  4. Christen Y, Am. J. Clin. Nutr., 7, 621 (2000)
  5. Lee SB, Wang X, Hong IK, Appl. Chem. Eng., 29(6), 663 (2018)
  6. Hong IK, Park BR, Jeon GS, Lee SB, Appl. Chem. Eng., 27(3), 276 (2016)
  7. Georgea VC, Dellaireb G, Rupasinghe V, Nutr. Biochem., 45, 1 (2017)
  8. Clifford AH, Cuppett SL, J. Sci. Food Agric., 80, 1063 (2000)
  9. Cook NC, Samman S, J. Nutr. Biochem., 7, 66 (1996)
  10. Jiang HL, Yang JL, Shi YP, Ultrason. Sonochem., 34, 325 (2017)
  11. Dranca F, Oroian M, Ultrason. Sonochem., 31, 637 (2016)
  12. Ameer K, Bae SW, Jo Y, Lee HG, Ameer A, Kwon JH, Food Chem., 229, 198 (2017)
  13. Beck S, Stengel J, Phytochem. Lett., 130, 201 (2016)
  14. Yanga RF, Genga LL, Lub HG, Fang XD, Ultrason. Sonochem., 34, 571 (2017)
  15. Das A, Golder AK, Das C, Ind. Crop. Prod., 65, 415 (2015)