화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.2, 190-196, April, 2021
유기산 첨가제를 이용한 저품질 석회석 슬러리의 탈황 성능 개선
Improvement of Desulfurization Performance of Low-grade Limestone Slurry Using Organic Acid Additives
E-mail:
초록
저품질 석회석의 탈황 성능 개선을 알아보기 위해 초산, 젖산, 개미산 등 3종의 유기산 첨가제를 사용하여 기포형 반응기에서 탈황 반응을 수행하였다. 유기산이 첨가되지 않은 석회석 슬러리는 pH 5.2 이하에서 초기 탈황 효율의 저하가 일어났다. 반면, 유기산이 첨가된 석회석 슬러리는 pH 4.2~4.5에서 안정된 초기 탈황 효율을 나타내었다. 슬러리 pH 4 이하에서 유기산이 첨가된 석회석 슬러리의 탈황 성능은 유기산의 해리에 의해 생성된 음이온의 양과 연관될 수 있다. 슬러리 중 유기산의 음이온 양이 많으면 슬러리 pH의 완충 기능 저하가 급격히 일어나지 않았다. 이와 같은 결과들은 유기산의 산성도 및 해리도에 기인하였다. 3종의 유기산 첨가에 따른 저품질 석회석 슬러리의 탈황 성능 증가율은 초산(2.6%) < 젖산 (6.4%) < 개미산 (16.7%) 순으로 나타났다.
Desulfurization reaction in a bubble type reactor was carried out by adding three organic acids such as acetic acid, lactic acid, and antic acid to investigate the enhancement of the desulfurization performance of low-grade limestone. Desulfurization of limestone slurry without organic acids initiated to degrade at pH 5.2 or less, whereas organic acid-added limestone slurry exhibited a stable efficiency in the initial desulfurization with slurry pH ranging 4.2~4.5. At slurry pH below 4, the desulfurization performance of limestone slurry with addition of organic acids may be related to the amount of anions produced by dissociation of the organic acids. When limestone slurry had a large amount of anions, a rapid decrease in buffer capacity of slurry pH did not occur. These results were due to the acidity and dissociation of organic acids. The desulfurization performance of low-grade limestone slurry increased in the order of acetic acid (2.6%) < lactic acid (6.4%) < formic acid (16.7%).
  1. Gong B, Kim J, Kim H, Lee S, Kim H, Jo J, Kim J, Gang D, Park JM, Hong J, J. Korean Soc. Atmos. Environ., 32, 501 (2016)
  2. Seo JH, Baek CS, Cho JS, Ahn YJ, Ahn JW, Cho KH, J. Energy Eng, 28, 1 (2019)
  3. Liu SY, Liu P, Gao J, Liu JY, Ye ZX, Xu CH, Proceedings of the 2nd International Conference on Bioinformatics and BiomedicalEngineering (ICBBE 2008), 3899-3902, May 16-28, Shanghai, China (2008).
  4. Seo SK, Chu YS, Shim Lee JK, Song H, J. Korean Ceram. Soc., 52, 479 (2015)
  5. Kim HS, Yoon YI, Lee HK, Kim SH, J. Korean Ind. Eng. Chem., 13(5), 468 (2002)
  6. Lim JH, Choi YR, Kim GY, Song HJ, Kim JH, Korean Chem. Eng. Res., 57(5), 743 (2019)
  7. Kim HS, J. Korean Inst. Resour. Recycl., 20, 3 (2011)
  8. Feng R, Sun Z, Zhang W, Huang H, Hu H, Zhang L, Xie H, IOP Conf. Ser.: Earth Environ. Sci., 121, 032025 (2018)
  9. Lv L, Yang J, Shen Z, Zhou Y, Lu J, Ener. Source. Part A, 38, 2649 (2016)
  10. Korean Limestone Industry Cooperation, Limestone for flue gas desulfurization, SPS-KLIC 004-0775 (2018).
  11. Liu SY, Xiao WD, Chem. Eng. Technol., 29(10), 1167 (2006)
  12. Seo JH, Back CS, Cho JS, Ahn JW, Yoon DY, Cho KH, J. Korean Inst. Resour. Recycl., 27, 58 (2018)
  13. LIU JX, Appl. Mech. Mater., 675, 422 (2014)
  14. Yang JT, Hu GX, Gao HY, Chem. Eng. J., 288, 724 (2016)
  15. Liu S, Xiao W, Liu P, Ye Z, Clean, 36, 482 (2008)
  16. Wang LD, Ma YL, Zhang WD, Li QW, Zhao Y, Zhang ZC, J. Hazard. Mater., 258, 61 (2013)