Polymer(Korea), Vol.45, No.3, 398-405, May, 2021
분해 가속화 조건의 해수 환경에서 Polybutylene Succinate 섬유의 분해거동
Biodegradation Behavior of Polybutylene Succinate Fibers in Simulated Seawater with Accelerating Degradation Conditions
E-mail:,
초록
본 연구에서는 기존의 나일론 기반의 비분해성 어구를 대체하기 위하여 제조된 polybutylene succinate(PBS) 섬유의 해수 환경에서의 생분해성 거동을 관찰하였다. 또한 빠른 시일 내의 섬유의 생분해를 확인하기 위하여, 계면 활성제 첨가 및 자외선 조사 방식을 분해 가속 조건으로는 선정하여 각 조건이 해수 조건에서 PBS 섬유의 생분해 거동에 미치는 영향을 확인하였다. 6개월간의 해수 환경에서의 생분해 실험에도 불구하고 무게 감소는 발견되지 않았으며 분해 정도는 분자량 감소 및 기계적 강도의 저하를 통해 예측이 가능하였다. 한편, 계면활성제의 첨가는 PBS 섬유 표면의 친수화를 진행하여 분해 균주의 흡착을 용이하게 하였으며 이는 분자량 감소에 큰 영향을 주는 것으로 확인되었다. 반면, 자외선을 조사할 시에는 섬유 표면에 미세 크랙을 발생시켜 기계적 강도의 저하가 명확히 발생하는 것을 확인하였다.
In this study, the biodegradation behavior of polybutylene succinate (PBS) fibers manufactured to replace conventional nylon-based non-degradable fishing net was observed in seawater environment. In addition, in order to find the appropriate degradation acceleration condition, surfactant addition and UV irradiation were selected as acceleration conditions, and the effects of each condition on the biodegradation behavior of PBS fibers in seawater conditions were confirmed. Despite the 6 months of biodegradation experiments in the seawater environment, negligible weight loss was found, and the degree of biodegradation could be predicted through a decrease in molecular weight and mechanical properties. Meanwhile, the addition of a surfactant facilitated the adsorption of the degraded strain by hydrophilizing the surface of the PBS fiber, which was confirmed to have a great effect on the molecular weight reduction. On the other hand, when ultraviolet irradiation, it was confirmed that fine cracks were generated on the surface of the fibers, thereby clearly deteriorating mechanical strength.
- Siracusa V, Rocculi P, Romani S, Rossa MD, Food. Sci. Technol., 19, 634 (2008)
- Vroman I, Tighzert L, Materials, 2, 307 (2009)
- Cho SY, Lee ME, Kwak HW, Jin H, Fibers Polym., 19, 1395 (2018)
- Scaffaro R, Maio A, Nostro A, Appl. Microbiol. Biotechnol., 104(5), 1823 (2020)
- Ahmed MK, Menazea AA, Abdelghany AM, Int. J. Biol. Macromol., 155, 636 (2020)
- Hongsriphan N, Pinpueng A, J. Polym. Environ., 27, 434 (2019)
- Gross RA, Kalra B, Science, 297, 803 (2002)
- Lule Z, Kim J, Polymers, 11, 148 (2019)
- Park SW, Bae JH, J. Kor. Soc. Fish. Tech., 44, 265 (2008)
- Srimahachota T, Yokota H, Akria Y, Materials, 13, 4276 (2020)
- Brown J, Macfadyen G, Mar. Policy, 31, 488 (2007)
- Park SW, Bae JH, Lim JH, Cha BJ, Park CD, Yang YS, Ahn HC, J. Kor. Soc. Fish. Tech., 43, 281 (2007)
- Karamanlioglu M, Preziosi R, Robson GD, Polym. Degrad. Stabil., 137, 122 (2017)
- Funabashi M, Ninomiya F, Kunioka M, Int. J. Mol. Sci., 10, 3635 (2009)
- Li H, Chang J, Cao A, Wang J, Macromol. Biosci., 5, 433 (2005)
- Kasuya KI, Takagi KI, Ishiwatari SI, Yoshida Y, Doi Y, Polym. Degrad. Stabil., 59, 327 (1998)
- Franca DC, Morais DD, Bezerra EB, Araujo EM, Wellen EM, Mater. Res., 21, 21 (2018)
- Fechine CJM, Demarquette NR, Polym. Eng. Sci., 48, 366 (2008)
- Jeon HJ, Kim MN, Int. Biodeterior. Biodegrad., 85, 289 (2013)
- Iniguez ME, Conesa JA, Fullana A, Waste Manag., 79, 339 (2018)
- Sadi RK, Fechine GJM, Demarquette NR, Polym. Degrad. Stabil., 95, 2318 (2010)
- Anankaphong H, Pentrakoon D, Junkasem J, Int. J. Polym. Sci., 2015, 368341 (2015)
- Kim HS, Kim HJ, Lee JW, Choi IG, Polym. Degrad. Stabil., 91, 1117 (2006)
- Bai Z, Liu Y, Su T, Wang Z, Polymers, 10, 90 (2018)
- Furukawa M, Kawakami N, Oda K, Miyamoto K, ChemSusChem, 11, 4018 (2018)
- Albertsson AC, Sares C, Karlsson S, Acta Polym., 44, 243 (1993)
- Sousa AR, Amorim KLE, Medeiros ES, Me´lo TJA, Rabello MS, Polym. Degrad. Stabil., 91, 1504 (2006)
- Zhang Y, Zhou S, Fang X, Zhou X, Wang J, Bai F, Peng S, Eur. Polym. J., 116, 265 (2019)
- Wellen RMR, Canedo EL, Rabello MS, Fechine GJM, Mater. Res., 19, 759 (2016)